AMENDED STORMWATER POLLUTION PREVENTION PLAN

FOR

REGIONAL FOOD BANK HUDSON VALLEY

580 NYS ROUTE 416

VILLAGE OF MONTGOMERY ORANGE COUNTY, NEW YORK

71 Clinton Street Montgomery, NY 12549

Samuel

MAY 2022 REVISED FEBRUARY 2023 AMENDED JULY 2024

© Engineering & Surveying Properties, PC 2024

TABLE OF CONTENTS

SECT	ION		PAGE
1.0	INTRO	DDUCTION	3
1.1	PUI	RPOSE	
1.2	SC	OPE	3
2.0	PROJ	ECT DESCRIPTION	3
3.0	TOPC	GRAPHY AND SOILS	5
4.0	ARCH	IAEOLOGY	5
5.0	METH	IODOLOGY	5
6.0	STOR	MWATER MANAGEMENT PLANNING	7
6.1	INI	TAL SITE PLANNING	7
6.	.1.1	EXISTING CONDITIONS	7
6.	.1.2	PROPOSED CONDITIONS	8
6.2	WA	TER QUALITY VOLUME	10
6.3	RU	NOFF REDUCTION VOLUME	11
6.4	APF	PLICATION OF STANDARD SMP'S FOR THE REVISED WQV	14
6.5	VO	_UME AND PEAK RATE CONTROL	15
6.	.5.1	CHANNEL PROTECTION VOLUME	16
6.	.5.2	PEAK RATE CONTROL	16
6.6	SO	L RESTORATION	17
7.0	EROS	SION AND SEDIMENT CONTROL MEASURES	19
8.0	LONG	TERM MAINTENANCE OF WATER QUALITY FEATURES	20
9.0	SUM	IARY OF FINDINGS AND CONCLUSIONS	22

TABLES

TABLE 1: EXISTING DRAINAGE AREA CHARACTERISTICS	8
TABLE 2: PROPOSED DRAINAGE AREA CHARACTERISTICS	10
TABLE 3: REQUIRED WATER QUALITY VOLUMES	10
TABLE 4: SPECIFIC REDUCTION FACTOR (S)*	13
TABLE 5: RUNOFF REDUCTION VOLUMES & REVISED WQV	14
TABLE 6: WQV PROVIDED IN STANDARD SMP'S	14
TABLE 7: CALCULATED CHANNEL PROTECTION VOLUMES (CPV)	16
TABLE 8: SUMMARY OF RESULTS AT THE DESIGN POINTS	17
TABLE 9: SOIL RESTORATION REQUIREMENTS	18

APPENDICES

APPENDIX 1:	FIGURES
-------------	---------

- APPENDIX 2: SOILS MAP AND CLASSIFICATIONS
- APPENDIX 3: CURVE NUMBER CALCULATIONS
- APPENDIX 4: TIME OF CONCENTRATION CALCULATIONS
- APPENDIX 5: WATER QUALITY VOLUME CALCULATIONS & RUNOFF REDUCTION VOLUME CALCULATIONS
- APPENDIX 6: HYDROGRAPH SUMMARIES & DIAGRAMS
- APPENDIX 7: 1 YEAR DESIGN STORM HYDROGRAPHS
- APPENDIX 8: 10 YEAR DESIGN STORM HYDROGRAPHS
- APPENDIX 9: 100 YEAR DESIGN STORM HYDROGRAPHS
- APPENDIX 10: RESERVOIR REPORTS
- APPENDIX 11: SOIL TESTING RESULTS
- APPENDIX 12: CONSTRUCTION SITE INSPECTION FORM & NOTICE OF INTENT
- APPENDIX 13: CONSTRUCTION WASTE MANAGEMENT & SPILL PREVENTION PLANS
- APPENDIX 14: SHPO DOCUMENTS
- APPENDIX 15: SEQUENCE OF CONSTRUCTION ACTIVITY
- APPENDIX 16 HYDRO INTERNATIONAL FIRST DEFENSE HYDRODYNAMIC SEPARATOR CALCULATIONS AND MANUFACTURER CUTSHEETS
- APPENDIX 17 CONTRACTOR CERTIFICATION FORM
- APPENDIX 18 SWPPP CONSTRUCTION LOG BOOK

1.0 INTRODUCTION

Engineering & Surveying Properties, PC (EP) prepared this report summarizing the impact of the proposed development of the property, known as Regional Food Bank - Hudson Valley will have on downstream properties and receiving waters.

1.1 PURPOSE

The purpose of the Stormwater Pollution Prevention Plan (SWPPP) is to:

- a. Maintain existing drainage patterns and continue the conveyance of upland watershed runoff;
- b. Mitigate potential stormwater quality and peak stormwater flow impacts, and prevent soil erosion and sedimentation resulting from stormwater runoff.

1.2 SCOPE

The scope of the SWPPP for Regional Food Bank – Hudson Valley described herein is as follows:

- a) Describe and estimate existing stormwater runoff conditions;
- b) Describe and estimate proposed stormwater runoff conditions;
- c) Describe and evaluate stormwater management facilities planned as part of the proposed development.

2.0 PROJECT DESCRIPTION

The Regional Food Bank – Hudson Valley project site is 27.04± acres in size and is located on the east side of NYS Route 416 in the Village of Montgomery, Orange County, New York. The project as proposed, will be developed on a portion of a parcel that totals 27.04± acres in the Village of Montgomery (Section 214 Block 1 Lot 1). The parcel is proposed to be subdivided into two (2) lots: with Lot 1 being 6.30± acres and Lot 2 proposed as 20.74± acres. The Regional Food Bank – Hudson Valley is being proposed on Lot 1 and Lot 2 is proposed to remain vacant (existing farmland). Access to the project site will be via the existing commercial driveway servicing the existing Aden Brook Agricultural farm property. A Private Commercial Road designation has been granted by the Town of Montgomery over a portion of the existing driveway within the Town of Montgomery. A Private Road Commercial Road designation will be sought from the Village of Montgomery for the section of the proposed commercial driveway within the Village of Montgomery to provide legal access and frontage to the proposed development

lot. The area of analyzed in the SWPPP is $19.9\pm$ acres which accounts for areas of runoff contributary to the design point for which the entire Food Bank development is within. A site location map is included as Figure 1 in Appendix 1.

As proposed, the Regional Food Bank – Hudson Valley project involves the development of Lot 1 into a \pm 43,788 square foot storage building. The building will have a parking area located at the front for employees and a second parking area to the side of the building to be utilized for volunteers and pick-up/deliveries. A loading dock area is located at the rear of the building. A portion (\pm 1,068 feet) of the existing commercial driveway will be "re-constructed" and paved to a width of 30 feet. Multiple stormwater facilities will be constructed within the project area to mitigate any stormwater runoff quality and peak rate quantity increases. As defined in the New York State Stormwater Management Design Manual last revised January 2015, a portion of the proposed facility is classified as a stormwater hotspot. Table 4.3 in the Stormwater Design Manual classifies outdoor loading/unloading facilities as a stormwater hotspot. Additional mitigation/treatment for the loading dock area is proposed to fully treat the hotspot area runoff prior to discharge.

To the north and northeast of the project site there are vacant lands used for agriculture as well as wooded areas. The project site is bounded on the west by an excavating business, the Harrison Meeting House Site & Cemetery, several single-family residences, and NYS Route 416 which the site receives its access from. To the south is the Medline warehouse and to the east are various farmlands. The project is also located across the street from Orange County Airport, however the proposed building is located outside of the existing perpetual avigation easement.

The overall project site is an irregularly shaped area of land that is currently used for agricultural operations; however, the area of focus is mostly rectangular shaped. There is a low area located near the front of the property along NYS Route 416 and a previous excavated area that has been classified as an isolated wetland area. The existing site cover consists predominantly of agricultural growth with some woods, grass, and roadways.

3.0 TOPOGRAPHY AND SOILS

The existing topography in the Regional Food Bank – Hudson Valley project area is relatively gentle across the site, though due to a knoll located on the property it ranges from approximately 398 feet above mean sea level (AMSL) to 374 feet AMSL. The majority of the slopes (94.4%) on the project site are gently sloped (0%-10%), and moderate sloped areas (10%-15%) consist of approximately 4.6% of the site. The area of significant slope (15%-25%) on site represents 0.8% of the site area, with the remaining portion of the site (0.2%) consisting of severe slopes (>25%).

Soils information for the Regional Food Bank – Hudson Valley project area was assembled from data provided by the U.S. Department of Agriculture Soil Conservation Service printed in the Soil Survey of Orange County identifies the presence of Bath-Nassau channery silt loams (BnB), Canandaigua silt loam (Ca), Castile gravelly silt loam (CgB), Chenango gravelly silt loam (CnB), Erie gravelly silt loam (ErA), Fredon loam (Fd) and Histic Humaquepts (HH) soil complexes within the areas of the proposed project site. The CnB soils are considered to be a part of the "A" hydrologic soils group, the BnB soils part of the "C" hydrologic soil group, and the remaining Ca, CgB, ErA, Fd, and HH soils part of the "D" hydrologic soil group. A soil map is included as in Appendix 2.

4.0 ARCHAEOLOGY

On-site archaeological significance was addressed during the SEQR process as all coordination with New York State Parks, Recreation and Historic Preservation (NYSSHPO) Cultural Resource Information System (CRIS) was completed for the proposed project with a determination that there will be no impact to cultural or historical significance. A copy of this determination is included in Appendix 14.

5.0 METHODOLOGY

The methodology utilized for this analysis is based upon the U.S.D.A. Soil Conservation Service's Technical Release No. 20 and Technical Release No. 55, as utilized by the software entitled Hydrology Studio.

Hydrology Studio is a Microsoft Windows based program for analyzing the hydrology and hydraulics of stormwater runoff. It utilizes the latest techniques to predict the stormwater flows from any given storm event.

Hydrology Studio has the capability of computing hydrographs (representing discharge rates characteristic of specific watershed conditions, precipitation and geologic factors), combining hydrographs, and routing flows through pipes, streams and ponds. A drainage model can consist of four different components - subareas, combinations, reaches and reservoirs.

A subarea consists of a relatively homogeneous area of land, which produces a volume and rate of runoff unique to that watershed. A subarea combination is the hydrologic addition of two or more subareas in order to determine the peak runoff at a design point. A reach is a channelized conveyance structure which routes the runoff from one point to another. A reservoir consists of a natural or man-made impoundment which temporarily stores stormwater runoff and that empties in a manner determined by various hydraulic structures located at its outlet.

The SWPPP for Regional Food Bank – Hudson Valley was based upon the New York State Stormwater Management Design Manual published by the New York State Department of Environmental Conservation (NYSDEC) issued on January 2015. Criteria set forth by this manual, requires analysis and determination of the required Water Quality Volume (WQv), to provide extended detention of the 1-year storm event for Stream Channel Protection (Cpv), to control the peak discharge of the 10-year storm event also known as Overbank Flood Protection Criteria (Qp), and to control the peak discharge and safely pass the 100-year storm event otherwise known as Extreme Flood Control Criteria (Qf).

The SWPPP for Regional Food Bank – Hudson Valley was developed utilizing the "five step" process for Stormwater Site Planning and Practice Selection. The five steps consist of site planning, determination of the water quality treatment volume, runoff reduction volumes applied through the use of "green technologies", application of standard stormwater management practices (SMP's) for remaining water quality volumes, and application of volume and peak rate control methods as required. Each of the five "steps" is further discussed in detail within this report.

6.0 STORMWATER MANAGEMENT PLANNING

6.1 INITIAL SITE PLANNING

Development of the proposed site plan within the "site planning" process was an iterative process with different conceptual layouts developed for the project site. The current proposed plan was developed after careful consideration of many planning techniques and potential environmental impacts. The proposed site plan was devised to protect and preserve natural features, maintain natural drainage patterns, and avoid to the greatest extent practical, the disturbance of erodible The proposed design of the site through grading and stormwater soils. infrastructure along with quality and quantity treatment facilities maintains the existing contributary drainage areas to the greatest extent practical while still achieving the development goals. The natural features such as regulated wetlands, water courses, and steep slopes have been avoided to the greatest extent practical while still achieving the development goals. The avoidance of steep slopes to the extent possible in conjunction with the design and implementation of erosion & sediment control measures eliminates the potential impact to any erodible soils. The site plan with proposed watershed boundaries is included as Figure 3 in Appendix 1.

The hydrologic and hydraulic analysis was performed by delineating the tributary watershed to the design point and then dividing these tributary areas into relatively homogeneous subareas. The separation of the watershed into subareas was dictated by watershed conditions, methods of collection, conveyance and points of discharge. Watershed characteristics for each subarea were then assessed from topographical maps, soil surveys, site investigations and land use maps.

6.1.1 EXISTING CONDITIONS

The existing watershed that encompasses the proposed project area contributory to the site's discharge location were found to three drainage areas with three different design points. A design point represents the point at which stormwater, generated within a watershed, will exit via either sheet flow along a linear boundary or as a point discharge. One existing watershed, EX-A, collects runoff via sheet flow across the site and cumulates at a culvert along NYS Route 416: Design Point A. Another

existing watershed, EX-B, collects runoff via sheet flow towards the back of the site and the stormwater ends up in the low-lying area of the isolated wetlands that does not discharge from the site: Design Point B. Finally, Design Point C collects runoff from the eastern side of the site directed toward a culvert underneath the existing access road. Figure 2 in Appendix 1 identifies the subareas and their corresponding design points. The characteristics of the existing subareas of these watersheds are detailed in Table 1 below.

The subareas were delineated and a contributory drainage area, a curve number (CN) and time of concentration (Tc) was determined for each subarea. Calculations for the CN's and Tc's are included in Appendices 3 and 4, respectively. It should be noted that the total contributory area includes off-site areas where appropriate and therefore, the total drainage area size may differ from the project development area.

DRAINAGE AREA DESIGNATION	DRAINAGE AREA SIZE (Ac.)	CN	Tc (min)
EX-A	12.36	76	10.2
EX-B	4.73	67	5.4
EX-C	2.81	83	9.0
TOTAL	19.9		

TABLE 1: EXISTING DRAINAGE AREA CHARACTERISTICS

6.1.2 PROPOSED CONDITIONS

For the proposed conditions analysis, the existing watershed was broken into a post-development network consisting of eight (8) subareas that are contributary to the three different Design Points. Proposed watershed area "A" includes nearly all of the development taking place. PR-A1 consists of the Food Bank building, its front parking lot, and a portion of the side parking lot. This area is routed to a forebay where the stormwater is treated before flowing into a bioretention basin. From the bioretention basin, the water makes its way through pipes and structures to the Design Point A. PR-A2 consists of the hotspot area which includes the loading area in the rear and tributary areas to the lined forebay and pocket pond. Runoff from the loading area, which is considered the hotspot area, is captured and treated through the Hydrodynamic Separator before being directed to the lined forebay. From the lined forebay, treated water flows over a weir into the pocket pond and will eventually make its way through pipes and structures to Design Point A. PR-A3a includes most of the area north of the proposed commercial driveway and features a vegetated swale to collect the surface sheet flow runoff and discharge to Design Point A. PR-3b is the area north of the proposed commercial driveway that does not flow into the vegetated swale and flows toward Design Point A. PR-A4a includes tributary area to the south of the commercial area and also features a vegetated swale to collect the surface sheet flow runoff and discharge to Design Point A. Like PR-3b, PR-4b includes area that does not flow into the vegetated swale, but is also located south of the proposed commercial driveway and flows toward Design Point A. PR-B and PR-C shares the same Design Point as EX-B and EX-C respectively, however their contributary area has been decreased in the proposed condition as portions of the original contributary area have been redirected to Design Points B and C. These subareas are delineated and identified in Figure 4. The characteristics of each proposed subarea are detailed in Table 2 on the following page. It is noted that the total contributory area to each design point includes off-site areas and therefore, the total drainage area size differs from the project development area. And due to the project development, the total proposed drainage area is slightly larger than the existing drainage area.

DRAINAGE AREA DESIGNATION	DRAINAGE AREA SIZE (Ac.)	CN	Tc (min)
PR-A1	2.43	75	6.0
PR-A2	2.14	71	1.8
PR-A3a	4.09	76	15.0
PR-A3b	0.84	63	9.0
PR-A4a	3.71	80	19.2
PR-A4b	1.85	86	14.4
PR-B	3.00	68	5.4
PR-C	1.84	83	9.0
TOTAL	19.9		

TABLE 2: PROPOSED DRAINAGE AREA CHARACTERISTICS

6.2 WATER QUALITY VOLUME

The second step of the stormwater site planning process is determination of the required water quality treatment volume (WQ_v). WQ_v is calculated using the 90% Rule as defined by NYSDEC Stormwater Management Design Manual. The 90% Rule is defined as:

$$WQ_v = [(P)(R_v)(A)] / 12$$

 $\begin{array}{lll} \mbox{Where:} & \mbox{P is the 90\% Rainfall Event Number} \\ \mbox{R_v is equal to $0.05 + 0.009*I$} \\ \mbox{I is the Impervious Cover in percent} \\ \mbox{A is the subarea total acreage} \end{array}$

The WQ_v was calculated for the watershed encompassing the portion of the project site where the proposed development is going to take place. The results of the WQ_v calculations are included in Table 3 below.

TABLE 3: REQUIRED WATER QUALITY VOLUMES

	WQv (Ac-ft)
SITE	0.510

6.3 RUNOFF REDUCTION VOLUME

Step three of the stormwater site planning process is the incorporation of "green infrastructure technologies" and standard SMP's with runoff reduction volume (RR_v) capacity. The intended result of RR_v, is to treat 100% of the WQ_v and replicate pre-development hydrology, however if unattainable, provide the minimum RR_v required and provide additional treatment for the remaining WQ_v. Each of the following green technologies and standard SMP's with RR_v capacity were analyzed for implementation along with an explanation of how they are used or unable to be used on this project.

Green Technologies

- Conservation of Natural Areas
 - The proposed project being developed on Lot 1 will utilize the majority of the lot and there will not be any available land to be utilized as conservation of natural areas, therefore conservation of natural areas was not proposed.
- Sheet flow to Riparian Buffers / Filter Areas
 - As all areas suitable for a riparian buffer and filter areas have been accounted for in other green technologies, the implementation for this practice is not proposed.
- Vegetated Open Swales
 - Vegetated swales were utilized for this project to treat runoff from the proposed widening of the existing driveway which shall be a private commercial road, as well as portions of the improved Food Bank site.
- Tree Planting / Tree Box
 - The site design proposes a landscaping plan however this landscaping will be utilized for aesthetic purposes only and will not be designed to incorporate stormwater quality treatment.
- Disconnection of Rooftop runoff
 - The rooftop runoff from the proposed buildings will be directed to the storm drainage system. The runoff collected from the rooftops will be conveyed to the bioretention forebay where it will be treated.

- Stream Daylighting
 - There are no culverted/piped streams on-site therefore this technology is not applicable to this project.
- Rain Gardens
 - Since most of the tributary drainage areas consist of areas greater than 1,000 sq.ft., rain gardens could not be utilized as a green technology on this project.
- Green Roof
 - As all the areas of the proposed development, including all new rooftop areas, have been accounted for in other green technologies, the implementation of this practice is not proposed.
- Stormwater Planters
 - Stormwater planters are suitable for small runoff areas such as small rooftops or plaza and courtyards. Stormwater planters work very well within urban redevelopment projects with appropriate soils. This project is utilizing other technologies for treatment of rooftop runoff; therefore, the green technology of stormwater planters was not implemented.
- Rain Tanks/Cistern
 - Rain Tanks and cisterns are well-suited to treat smaller areas of rooftop runoff, however as previously stated, the large amount of rooftop runoff will be treated through the bioretention area and its forebay.
- Porous Pavement
 - Porous pavement was not considered as areas eligible for porous pavement have already been considered under a different runoff reduction practice.
- Soil Restoration
 - Soil restoration measures must be applied to all areas of disturbance that will be re-established as non-impervious cover to recover the original properties and porosity of the soil to the greatest extent

practical. Soil restoration techniques and requirements are discussed further in Section 5.6 of this report.

Standard SMP's with RRv Capacity

- Infiltration Practice
 - Infiltration practices were not implemented due to the site grading and the groundwater elevation around the stormwater management areas.
- Bio-Retention Practice
 - A Bio-Retention Basin has been designed to detain and treat tributary stormwater runoff from the proposed development which includes newly created impervious areas.

Alternative SMP's

- Hydro International Hydrodynamic Separator
 - A Hydro International First Defense hydrodynamic separator is proposed to receive runoff from the loading dock area. The hydrodynamic separator will provide one of the two treatment methods required for additional treatment to hotspot runoff prior to discharge. Calculations and manufacturer cutsheets are provided in Appendix 16.

The RR_v for each of the green technologies used has been calculated for the point of analysis. The total RR_v was calculated and compared to the WQ_v for the design point. The minimum RR_v is based upon the hydrological soil group (HSG) classification within the watershed and is defined a Specific Reduction Factor (*S*). The reduction factors for each HSG are shown below on Table 4.

HSG	S
A	0.55
В	0.40
С	0.30
D	0.20

TABLE 4: SPECIFIC REDUCTION FACTOR (S)*

^{*} Watersheds with multiple HSG's shall utilize a weighted average

 $\mathsf{RR}_{v \text{ MIN}}$ was calculated for each watershed in accordance with the following formula:

 $RR_{v MIN} = [(P)(0.95)(S)(I)] / 12$

The total calculated RR_v provided is compared to the RR_{v MIN} to ensure that the green technologies proposed are providing the minimum reduction of the WQ_v as required. The RR_{v MIN} and the total RR_v provided along with the revised WQ_v are shown below in Table 5. The revised WQ_v is calculated using the 90% rule as noted in Section 6.2 above, however, the contributory area and impervious area are reduced through the application of green technologies that have been utilized. The calculations for the required and adjusted water quality volumes along with the runoff reduction volumes calculations are shown in Appendix 5.

TABLE 5: RUNOFF REDUCTION VOLUMES & REVISED WQV

DESIGN	RR _V MIN	Total RR _v	Revised
POINT		(Provided)	WQ _v
SITE	0.145 ac-ft	0.168 ac-ft	0.178 ac-ft

6.4 APPLICATION OF STANDARD SMP'S FOR THE REVISED WQV

Continuing with the stormwater site planning process, step four is to ensure treatment for any remaining WQ_v is provided. The RRv does reduce the required WQv treatment for the watershed however, it does not completely eliminate the need to provide treatment through standard stormwater management practices. Additional WQv treatment is provided within the proposed stormwater management practices of the Bio-Retention Forebay A1 as shown below in Table 6. The additional storage within Forebay A1 after the required 25% WQv is accounted for and provides approximately 8,700 cubic feet (0.200 Ac-ft). These calculations can be found in Appendix 5.

DRAINAGE	Required	WQv	Percent of
AREA	WQv (Ac-ft)	Provided (Ac-ft)	WQv
SITE	0.178	0.200	> 100 %

TABLE 6: WQV PROVIDED IN STANDARD SMP'S

6.5 VOLUME AND PEAK RATE CONTROL

The fifth and final step of the stormwater site planning process is to apply volume and peak rate control as necessary through the use of standard stormwater management practices. In preparing the SWPPP, it was determined that the onsite stormwater facilities (Bio-Retention and Pocket Pond) will be necessary to mitigate the potential increase in peak stormwater runoff rates from the proposed site improvements.

The new stormwater management facilities have been designed as a Pocket Pond and a Bio-Retention facility (F-5) to mitigate any increase in the peak runoff rate from the site improvements

The on-site stormwater management facility is proposed to mitigate any increase in peak runoff from the site improvements tributary to it. The following NYSDEC design criteria are achieved:

- A forebay has been provided for each practice.
- Outlet protection has been provided at the pond outfall for discharges to daylight through rip-rap flow dispersion.
- Forebays are created by an earthen berm.
- Access to the pond and Bio-Retention basin have been provided.
- A fixed sediment marker shall be installed in each forebay and the Bio-Retention facility to measure sediment deposition through time.
- Pond side slopes are designed at 4:1 or a safety bench is provided for facilities with depths greater than four (4) feet and side slopes less than 4:1.
- A non-clogging low flow orifice has been incorporated into the design of the Pocket Pond in PR-A2.
- The outlet structures will be located within the embankments for maintenance access and safety.
- In an emergency should the permanent pool need to be completely drained (Forebays & Pocket Pond), a portable pump will be required to drain the remaining water.

6.5.1 CHANNEL PROTECTION VOLUME

The required Channel Protection Volume (Cp_v) controls are designed to protect downstream channels from erosion. The Cp_v is achieved through providing extended detention of the 1-year storm event for a period of 24 hours, for any volume not previously reduced through runoff reduction volume reduction (RR_v). Ponds that do not meet the 24-hour extended detention period will utilize a minimum 3" orifice. Detention times are shown in Appendix 10 Reservoir Reports and the calculated 1-year storm event runoff volume along with the required Cpv volume provided are shown below in Table 7.

1-Yr Runoff Volume (Ac-ft)	RRv Provided	Cp _∨ Required	Cp _∨ Provided
	(Ac-ft)	(Ac-ft)	(Ac-ft)
1.032	0.168	0.864	0.947

TABLE 7: CALCULATED CHANNEL PROTECTION VOLUMES (CPV)

6.5.2 PEAK RATE CONTROL

The peak discharge rate is controlled utilizing the storage volume available in the stormwater pond and controlling discharge through an overflow weir. The watershed responses to the 1-, 10- and 100-year - 24-hour storm events were computed and evaluated at the aforementioned design points. The total peak runoff rates at the design points for the existing conditions as well as the final proposed conditions have been calculated and shown on the following page in Table 8. Stormwater computations are attached at the end of this report.

The peak runoff rates have been reduced in the proposed conditions during the 1-, 10- and 100-year design storms for all drainage areas on site.

Criteria		Design Point A	Design Point B	Design Point C
	Existing (cfs)	8.946	1.633	3.384
1 – YEAR	Proposed (cfs)	7.836	1.190	2.216
(Cpv)	Reduction (cfs)	- 1.110	- 0.443	- 1.168
	Reduction (%)	- 12.40%	- 27.13%	- 34.52%
	Existing (cfs)	28.50	8.735	8.570
10 – YEAR	Proposed (cfs)	23.85	5.834	5.612
(Qp)	Reduction (cfs)	- 4.65	- 2.901	- 2.958
	Reduction (%)	- 16.31%	- 33.21%	- 34.51%
	Existing (cfs)	66.96	24.74	17.87
100 – YEAR	Proposed (cfs)	64.03	16.12	11.70
(Qf)	Reduction (cfs)	- 2.93	- 8.62	- 6.17
	Reduction (%)	- 4.37%	- 34.84%	- 34.52%

TABLE 8: SUMMARY OF RESULTS AT THE DESIGN POINTS

Since the runoff rates have been decreased in the post-development condition, there will be no adverse impact to the downstream receiving waters. Therefore, the SWPPP designed for Regional Food Bank – Hudson Valley will accomplish the intent of its design.

6.6 SOIL RESTORATION

Soil restoration is intended to recover the original properties and porosity of the soil to the greatest extent practicable. Soil restoration measures shall be applied to any disturbed area within the project prior to establishment of permanent vegetation and installation of landscaping. Any proposed impervious areas do not require soil restoration measures. Soil restoration measures such as tilling allows for compacted soil to gather oxygen and create temporary and even permanent air voids and when combined with the incorporation of organic material, greatly improves the soils characteristics to temporarily store water and subsequent runoff reduction through infiltration and evapotranspiration.

Various soil disturbance activities related to construction of land development within various soil types and the associated minimum required soil restoration techniques are shown on the following page in Table 9.

Type of Soil Disturbance	Soil Restoration Requirement		Comments / Examples		
No Soil Disturbance	Restoration not permitted		Preservation of Natural Features		
Minimal Soil Disturbance	Restoration not required		Clearing and Grubbing		
Areas where	HSG A & B	HSG C & D			
topsoil is stripped only – NO change in grade.	Apply 6" of topsoil	Aerate* and apply 6" of topsoil	Protect Areas from any ongoing construction activities.		
	HSG A & B	HSG C & D			
Areas of cut or fill	Aerate* and apply 6" of topsoil	Apply full Soil Restoration **			
Heavy traffic areas on site (especially in a zone 5'-25' around buildings, but not within the 5' perimeter around the foundation walls)	Apply full Soil Restoration** (de- compaction and compost enhancement)				
Areas where Runoff Reduction and/or Infiltration Practices are applied.	Restoration not required, but maybe applied to enhance the reduction specified for appropriate practices		Keep construction equipment from crossings these areas. To protect newly installed practice from any ongoing construction activities construct a single- phase operation fence area.		
Redevelopment projects	Soil restoration required on redevelopme in areas whe impervious a converted to area	ent projects ere existing area will be			

TABLE 9: SOIL RESTORATION REQUIREMENTS

* Aeration includes the use of machines such as tractor-drawn implements with coulters making a narrow slit in the soil, a roller with many spikes making indentations in the soil, or prongs which function like a mini-subsoiler.

** Per "Deep Ripping and De-compaction Guidelines", NYSDEC 2008

7.0 EROSION AND SEDIMENT CONTROL MEASURES

Soil erosion and sediment control measures have been detailed on the plans and outlined herein. The following are general measures that should be implemented:

- a. Damage to surface waters resulting from erosion and sedimentation shall be minimized by stabilizing disturbed areas and by removing sediment from construction site discharges.
- b. Site preparation activities shall be planned to minimize the area and duration of soil disturbance. The following requirements shall apply:
 - The required site inspections by the qualified inspector shall occur once every seven (7) days.
 - In areas where disturbance has temporarily or permanently ceased, stabilization shall be implemented within fourteen (14) days from the ceasing of soil disturbance activity.
- c. Permanent traffic corridors shall be established and "routes of convenience" shall be avoided. Off-site sediment tracking shall be minimized through regularly scheduled sweeping and good housekeeping of construction vehicles
- d. A qualified professional shall inspect and log the erosion and sediment control measures once every seven days once earth disturbance has commenced and continue until the site has achieved final stabilization in accordance with the requirements. During times of possible inactivity (i.e. winter months), upon the site being temporarily stabilized, the professional shall perform inspections monthly. The professional shall make recommendations to the operator on how to maintain the integrity and function of all temporary erosion control measures throughout the duration of the development process. Any deficiencies in the measures shall be corrected as soon as possible by the operator.
- e. An up to date Construction Site Log Book which includes this SWPPP for the project shall be maintained on site at all times during construction. The Construction Site Log Book shall also include the items found in the most recent

version of the New York Standards and Specifications for Erosion and Sediment Control.

In particular, the following measures will be implemented:

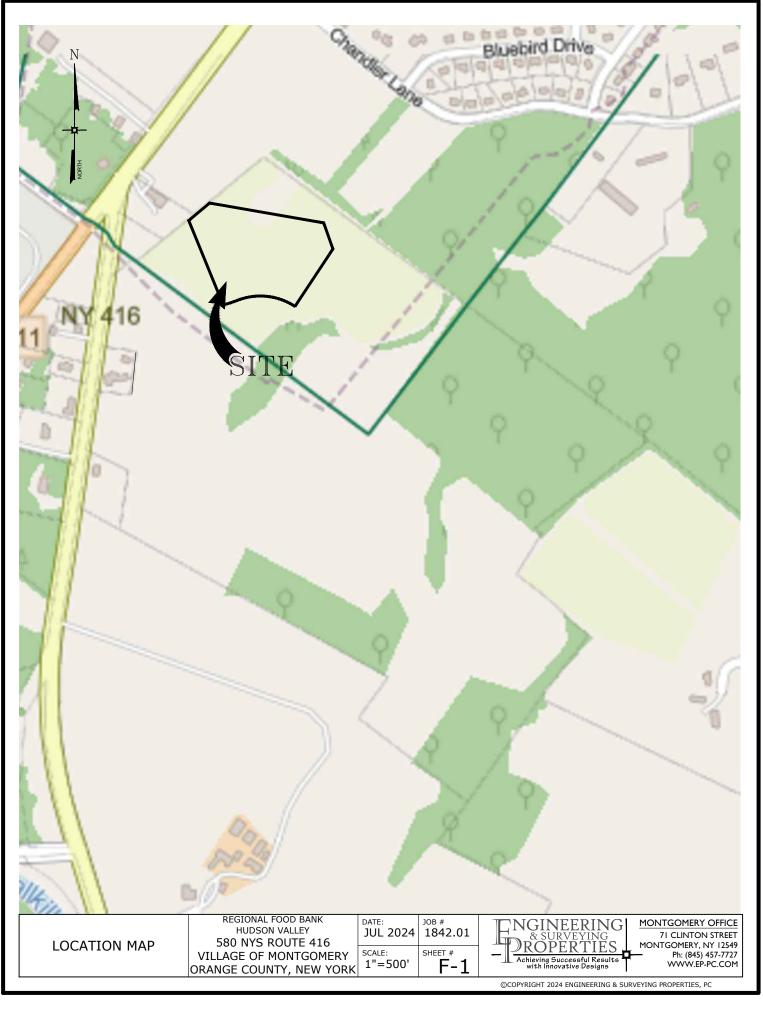
- a. Pre-Construction Installation: Prior to any disturbance on site, silt fence shall be installed in accordance with the approved plans in the area of the first phase. Prior to commencement of any subsequent phase, silt fence shall be installed in the proper phase in accordance with the approved plans. Siltation barriers shall be maintained in good condition and reinforced, extended, repaired or replaced as necessary.
- b. In no case shall erodible materials be stockpiled within 25 feet of any ditch, stream or other surface water body.
- c. Permanent vegetative cover: Immediately following the completion of construction activity in any portion of the site, permanent vegetation shall be established on all exposed soils by properly seeding at a coverage rate as noted on the approved plans and covered with straw. Water shall be applied to newly seeded areas as needed until grass cover is well established.
- d. Washouts shall be immediately repaired, reseeded and protected from further erosion. All accumulated sediment shall be removed and contained in appropriate spoil areas. To effectively control wind erosion, water shall be applied to all exposed soils as necessary.

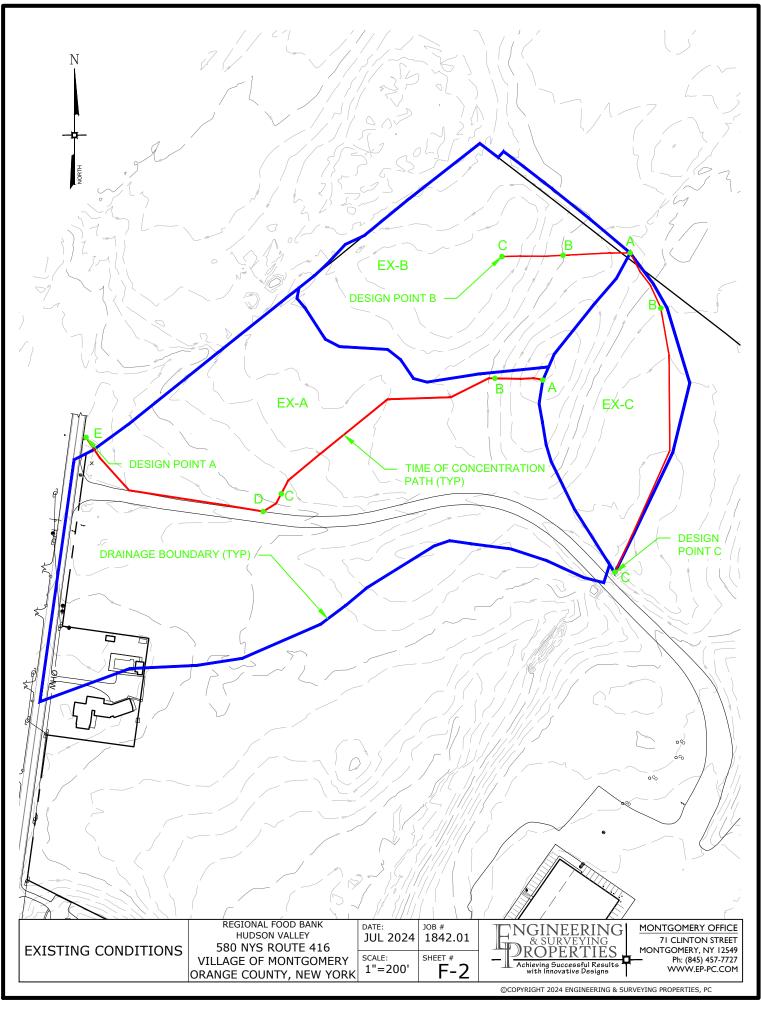
8.0 LONG TERM MAINTENANCE OF WATER QUALITY FEATURES

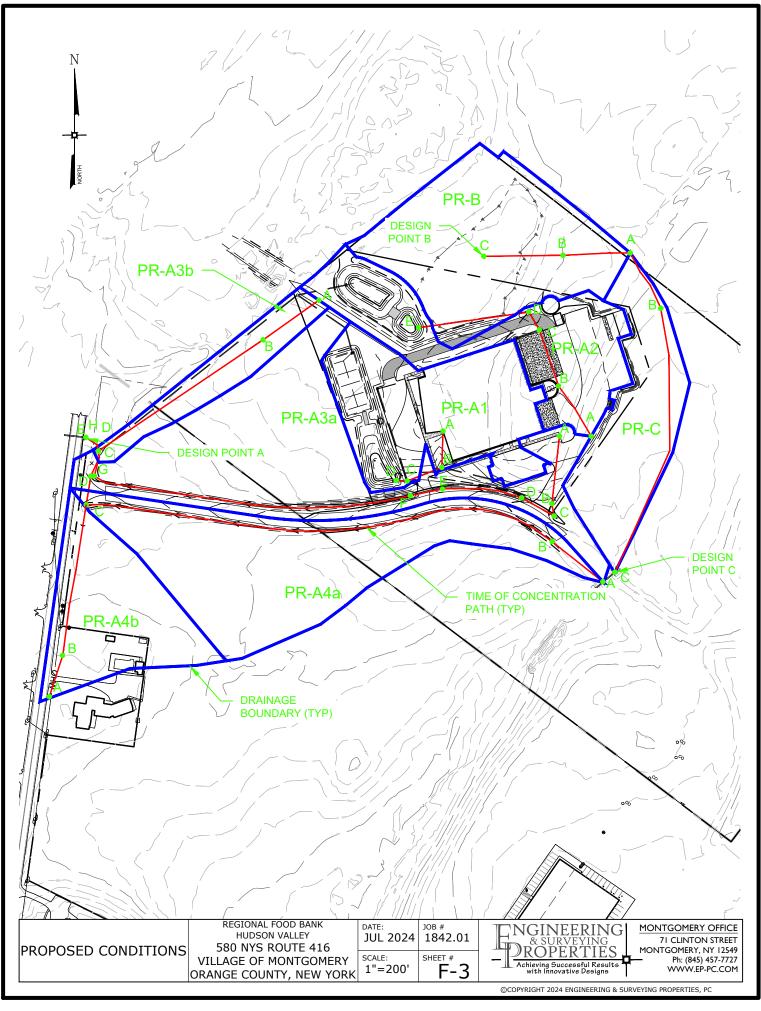
Upon completion of the project, the stormwater facilities shall be owned and maintained by the *property owner*. The property owner shall be responsible to ensure that the facilities operate and function as designed through proper maintenance as follows.

- a. Regular inspection and maintenance of the proposed facilities is required to ensure its long-term water quality and quantity reduction functions.
- b. All stormwater facilities and roadways with associated infrastructure are proposed to be located within lands to be owned by the property owner.

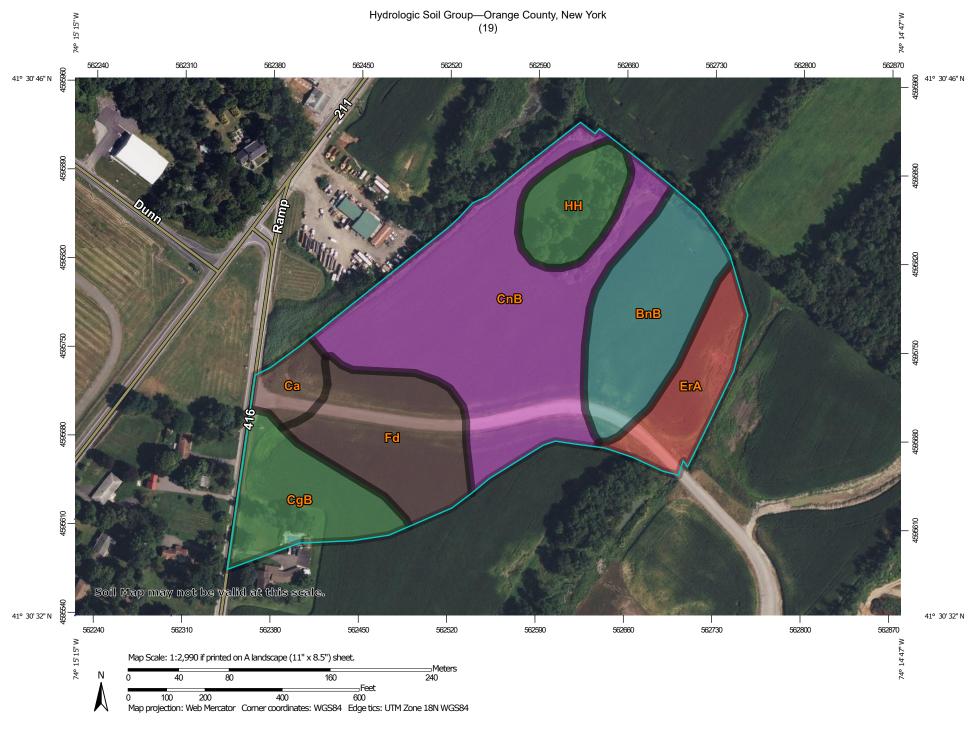
- c. Catch Basins:
 - i. Basins shall be inspected for accumulated sediment and trash every 6 months.
 - ii. Accumulated sediment and trash shall be removed from basins annually, or at more frequent interval, if needed.
- d. Bio-Retention
 - i. Sediment shall be cleaned out of the sedimentation chamber when it accumulates to a depth of more than six inches. Vegetation within the sedimentation chamber shall be limited to a height of 18 inches. The sedimentation chamber outlet devices shall be cleaned/repaired when drawdown times exceed 36 hours. Trash and debris shall be removed as necessary.
 - ii. Silt/sediment shall be removed from the filter bed when the accumulation exceeds one inch. When the filtering capacity of the filter diminishes substantially (i.e., when water ponds on the surface of the filter bed for more than 48 hours), the top few inches of discolored material shall be removed and shall be replaced with fresh material. The removed sediments shall be disposed in an acceptable manner (i.e., landfill).
 - iii. Areas devoid of mulch shall be re-mulched on an annual basis. Dead or diseased plant material shall be replaced.
- e. Pocket Pond
 - i. The grass within the pond shall be mowed at least 3 times per growing season, limiting the grass to a height of no more than 12".
 - ii. Sediment removal should be done at least every five years.
- f. Hydro International First Defense Separator:
 - i. During the first year of operation, the unit shall be inspected every six months to determine the rate of sediment and floatables accumulation.
 - ii. The vortex separator shall be inspected every six months and cleared out once a year or following a spill in the drainage area.

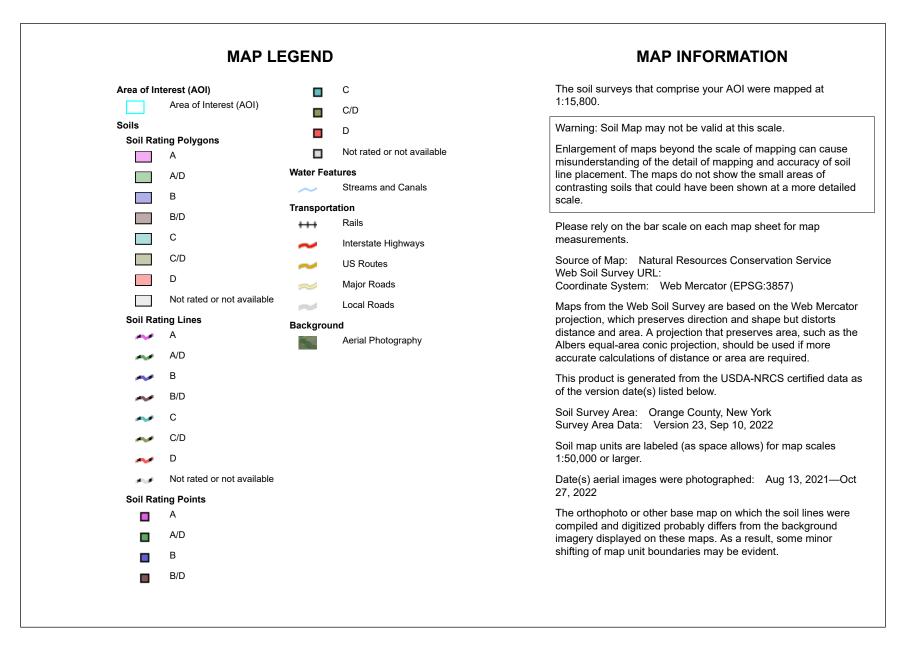

9.0 SUMMARY OF FINDINGS AND CONCLUSIONS


Based on the analysis of the pre-development and post-development stormwater conditions, and the implementation of stormwater quality and sediment and erosion control measures, the potential stormwater impacts of the Regional Food Bank – Hudson Valley project will be mitigated to the greatest extent practical.


- a. Prevent increases in flooding and flood damage through the reduction of the rate of runoff from all areas.
- b. Reduce the erosion potential from the development through the reduction of the rate of runoff from the project site and through the implementation of the soil and erosion control measures outlined on the project plans and as highlighted herein.
- c. Decreases non-point source pollution and water quality degradation through the use of the green technology and soil restoration.
- d. Those portions of the site which do not direct runoff into a stormwater management practice, will sheet flow through proposed lawn areas and through existing vegetative cover prior to discharging from the site.
- e. All criteria set forth in the New York State Stormwater Management Design Manual have been met.
- f. Post-development peak discharge rates will be reduced below pre-development peak discharge rates, or their impacts minimized.
- g. Sediment and erosion control measures are designed to minimize erosion loss and downstream sediment deposits.

APPENDIX 1


FIGURES


<u>APPENDIX 2</u> <u>SOILS MAP AND</u> <u>CLASSIFICATIONS</u>

USDA Natural Resources

Conservation Service

2/17/2023 Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
BnB	Bath-Nassau channery silt loams, 3 to 8 percent slopes	С	3.2	16.3%
Са	Canandaigua silt loam	B/D	0.7	3.4%
CgB	Castile gravelly silt loam, 3 to 8 percent slopes	A/D	2.3	11.4%
CnB	Chenango gravelly silt loam, 3 to 8 percent slopes	A	7.6	38.1%
ErA	Erie gravelly silt loam, 0 to 3 percent slopes	D	1.7	8.7%
Fd	Fredon loam	B/D	2.9	14.6%
НН	Histic Humaquepts, ponded	A/D	1.5	7.6%
Totals for Area of Inter	est		19.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher 19

JSDA

<u>APPENDIX 3</u> <u>CURVE NUMBER</u> <u>CALCULATIONS</u>

TNGINEE	RING			CURVE NUMBER (CN)				
DROPER	TIFS				WC	ORKSHE	ET	
Achieving Success	ful Results			WO. NO.	DATE	REVISED	SHEET	OF
with Innovative	Designs			1842.01	05/13/22	02/10/23	1	11
PROJECT TITLE Regional Food Bank -	Hudson Val	lov		LOCATION	Iontgomery	,		
CALCULATED BY	APPROVED			REF DRAW				
JM	JS							
<u>1. Runoff curve num</u>	ber (CN)			Existing	Proposed	Subarea:	EX	- A
		Cover De	scription			Area	Prod	uct of
Soil Name &	(00)/0	r type, treatn	•	itions)	CN	(acres)		Area
Hydrologic Group	,	••		,	20	· · ·		
A		Woods - Good Condition		1	30	0.08		2.44
Α		Grass - Fai			49	0.88		43.36
Α	Row Crops - C+CR - Good Condition			ndition	64	3.98		254.77
С		Woods - Fa	ir Condition		73	0.00		
С	Grass - Fair Condition				79	0.44		34.50
С	Row Crops - C+CR - Good Condi			ndition	81	0.49		39.90
D		Woods - Fa	ir Condition		79	0.00		
D	Grass - Fair Condition				84	2.53		212.74
D	Row Crops - C+CR - Good Col		ndition	85	3.11		264.01	
		Imper	vious		98	0.85		82.86
		· !						
					TOTAL =	12.36	934.58	322801
CN (wei	ghted) =	total p total	roduct area	- =	934.58228 12.360585			
CN (wei <u>2. Runoff</u> Frequency Rainfall, P	ghted) = yr in	75.610 Storm #1	Storm #2	Use CN= Storm #3	76		S =	3.16
Runoff, Q	in							
	nd CN with ta	ble 2-1, fig 2	-1, or eqns.	2-3 and 2-4))			
		-	•	,				

TNGINEE	RING	CURVE NUMBER (CN)				
DROPER	YING TIFS			ORKSHE	. ,	
Achieving Success with Innovative	ful Results	WO. NO.	DATE	REVISED	SHEET	OF
	Designs	1842.01	02/10/23		2	11
PROJECT TITLE Regional Food Bank -	Hudson Valley		Iontgomery	,		
CALCULATED BY	APPROVED BY	REF DRAW	/ING(S)			
ЈМ	JS		、			
<u>1. Runoff curve num</u>	<u>ber (CN)</u>	Existing	Proposed	Subarea:	EX	- B
	Cover Description			Area	Prod	uct of
Soil Name & Hydrologic Group	(cover type, treatment & cond	litions)	CN	(acres)		Area
	Woods - Good Condition		30	0.65		19.60
A		n				19.60
A	Grass - Fair Condition		49	0.00		445.07
Α	Row Crops - C+CR - Good Co	ondition	64	1.80		115.37
C	Woods - Fair Condition		73	0.07		5.34
C	Grass - Fair Condition		79	0.00		
С	Row Crops - C+CR - Good Co	ondition	81	0.69		55.76
D	Woods - Fair Condition	1	79	1.03		81.37
D	Grass - Fair Condition		84	0.00		
D	Row Crops - C+CR - Good Co	ondition	85	0.48		40.75
	Impervious		98	0.00		
			TOTAL =	4.73	318.1	91076
CN (wei	ghted) = <u>total product</u> total area	- =	<u>318.19108</u> 4.7269906			
CN (wei	ghted) = 67.314	Use CN=	67			
2. Runoff			-		S =	4.93
	Storm #1 Storm #2	Storm #3				
Frequency						
Rainfall, P Runoff, Q	in in					
	nd CN with table 2-1, fig 2-1, or eqns.	. 2-3 and 2-4)			
(, g = -, sq		,			

TNGINEE	RING			CURVE NUMBER (CN)				
A SURVE DROPER	YING TIFS				WC	ORKSHE	ET	
Achieving Success with Innovative	ful Results	I		WO. NO.	DATE	REVISED	SHEET	OF
	Designs			1842.01	02/21/23		3	11
PROJECT TITLE Regional Food Bank ·	. Hudson Va	llov			Iontgomery	,		
CALCULATED BY	APPROVE			REF DRAW	/ING(S)			
JM	JS				- ()			
<u>1. Runoff curve num</u>	iber (CN)			Existing	Proposed	Subarea:	EX	- C
		Cover D	escription			Area	Prod	uct of
Soil Name &	(00)/0	er type, treatr	•	itions)	CN	(acres)		Area
Hydrologic Group	(0006				00	· · ·		Alea
A		Woods - Go		1	30	0.00		
A			ir Condition		49	0.00		
Α	Row (Crops - C+Cl	R - Good Co	ndition	64	0.00		
С		Woods - Fa	air Condition		73	0.04		2.88
С	Grass - Fair Condition				79	0.00		
С	Row (Crops - C+Cl	R - Good Co	ndition	81	1.44		116.58
D		Woods - Fa	air Condition		79	0.00		
D	Grass - Fair Condition				84	0.00		
D	Row Crops - C+CR - Good Co		ndition	85	1.33		112.97	
		•						
		Impe	rvious		98	0.00		
					TOTAL =	2.81	232.42	298271
CN (wei	ighted) =		<u>roduct</u> area	- =	232.42983 2.8077748			
,	ighted) =	82.781		Use CN=	83			
2. Runoff					I		S =	2.05
F		Storm #1	Storm #2	Storm #3				
Frequency Rainfall, P	yr in							
Runoff, Q	in							
	nd CN with ta	able 2-1, fig 2	2-1, or eqns.	2-3 and 2-4))			

CNGINEERING & SURVEYING		CURVE NUMBER (CN)					
DROPER	TÏĔS 🕹				DRKSHE		
Achieving Success with Innovative	ful Results Designs		WO. NO. 1842.01	DATE 05/13/22	REVISED 02/21/23	SHEET 4	OF 11
PROJECT TITLE			LOCATION				
Regional Food Bank - CALCULATED BY	Hudson Valley APPROVED BY		Village of N REF DRAW	Montgomery			
JM	JS						
<u>1. Runoff curve num</u>	ber (CN)		Existing	Proposed	Subarea:	PR	- A1
Soil Name &	Cc	over Description			Area	Prod	uct of
Hydrologic Group		, treatment & cond	ditions)	CN	(acres)	CN x	Area
A		s - Good Conditior	-	39	0.93		36.18
С	Grass	s - Good Conditior	า	74	0.02		1.33
D	Grass	s - Good Conditior	1	80	0.00		
		Impervious		98	1.48		145.49
				TOTAL =	2.43	182.99	959986
CN (wei	ghted) =	total product total area	- =	<u>182.996</u> 2.4301616			
CN (wei	ghted) = 75.	302	Use CN=				
<u>2. Runoff</u> Frequency Rainfall, P Runoff, Q (Use P ar	yr in in in CN with table 2-	m #1 Storm #2	Storm #3			S =	3.33

T NGINEE	RING	CURVE NUMBER (CN)				
DROPER			WC	ORKSHE	ET	
Achieving Success with Innovative		WO. NO. 1842.01	DATE 05/13/22	REVISED 07/15/24	SHEET 5	OF 11
PROJECT TITLE		LOCATION			•	
Regional Food Bank -			Montgomery	1		
CALCULATED BY	APPROVED BY JS	REF DRAW	/ING(S)			
<u>1. Runoff curve num</u>	<u>ber (CN)</u>	Existing	Proposed	Subarea:	PR	- A2
	Cover Description			Area	Prod	uct of
Soil Name & Hydrologic Group	(cover type, treatment & cond	litions)	CN	(acres)	CN x	Area
A	Grass - Good Condition	-	39	0.90		35.02
С	Grass - Good Condition	I	74	0.20		14.80
D	Grass - Good Condition		80	0.04		3.03
D	Glass - Good Collution		00	0.04		5.05
	Impervious		98	1.00		98.00
			TOTAL	0.14	150.9/	162022
			TOTAL =	2.14	150.84	162932
CN (wei	ghted) = <u>total product</u>	- =	150.84629			
	total area		2.135773			
CN (wei	ghted) = 70.628	Use CN=	71			
2. Runoff					S =	4.08
	Storm #1 Storm #2	Storm #3	1		-	
Frequency	yr					
Rainfall, P	in in					
Runoff, Q (Use P ar	in nd CN with table 2-1, fig 2-1, or eqns.	1 2-3 and 2-4)			
(000. 0	,		,			

TNGINEE	RING	CURVE NUMBER (CN)				
BROPER'	TIFS		WC	ORKSHE	ET	
Achieving Success with Innovative	ful Results	WO. NO.	DATE	REVISED	SHEET	OF
PROJECT TITLE		1842.01 LOCATION	05/13/22	02/21/23	6	11
Regional Food Bank -		Village of M	Montgomery	,		
CALCULATED BY J M	APPROVED BY JS	REF DRAW	/ING(S)			
1. Runoff curve num	ber (CN)	Existing	Proposed	Subarea:	PR -	A3a
	Cover Description			Area	Prod	uct of
Soil Name & Hydrologic Group	(cover type, treatment & cond	itions)	CN	(acres)		Area
A		Woods - Good Condition		0.00		
A	Grass - Fair Condition	1	30 49	0.35		17.35
A	Row Crops - C+CR - Good Co	ndition	64	1.53		98.18
				1.00		00.10
С	Woods - Fair Condition		73	0.00		
C	Grass - Fair Condition		79	0.19		15.33
C	Row Crops - C+CR - Good Co	ndition	81	0.00		10100
				0.00		
D	Woods - Fair Condition		79	0.00		
D	Grass - Fair Condition		84	0.68		57.46
D	Row Crops - C+CR - Good Co	ndition	85	0.60		50.61
	Impervious		98	0.72		70.97
			TOTAL =	4.09	309.88	304858
CN (wei	ghted) =total product	- =	309.88049			
	total area		4.0855613			
CN (weig	ghted) = 75.848	Use CN=	76			
	- •					
2 Dunoff					S =	2.46
<u>2. Runoff</u>		Starra #2	1		5 -	3.16
Frequency	<i>Storm #1 Storm #2</i> yr	Storm #3	1			
Rainfall, P	in		1			
Runoff, Q			Į			
(Use P ar	nd CN with table 2-1, fig 2-1, or eqns.	2-3 and 2-4)			

TNGINEE	RING		CURVE NUMBER (CN)					
BROPER'			WC	ORKSHE	ET			
Achieving Success with Innovative	ful Results	WO. NO. 1842.01	DATE 02/21/23	REVISED	SHEET 7	OF 11		
PROJECT TITLE		LOCATION			<u> </u>			
Regional Food Bank - CALCULATED BY	Hudson Valley APPROVED BY		Montgomery	1				
JM	JS	REF DRAW	/ING(5)					
<u>1. Runoff curve numl</u>	ber <u>(CN)</u>	Existing	Proposed	Subarea:	PR -	A3b		
Cail Nama 8	Cover Description			Area	Prod	uct of		
Soil Name & Hydrologic Group	(cover type, treatment & con	ditions)	CN	(acres)	CN x	Area		
A	Woods - Good Condition		30	0.00				
A	Grass - Fair Condition		49	0.24		11.90		
A	Row Crops - C+CR - Good C		64	0.46		29.61		
С	Woods - Fair Condition	1	73	0.00				
C	Grass - Fair Condition		79	0.00				
С	Row Crops - C+CR - Good Condition		81	0.00				
D	Woods - Fair Condition	 ו	79	0.00				
D	Grass - Fair Condition		84	0.11		9.42		
D	Row Crops - C+CR - Good C	ondition	85	0.02		1.50		
	Impervious		98	0.00				
			TOTAL =	0.84	52.420)40932		
CN (weig	ghted) = <u>total product</u> total area	- =	52.420409 0.8351848					
CN (wei	ghted) = 62.765	Use CN=	63					
<u>2. Runoff</u> Frequency Rainfall, P Runoff, Q (Use P ar	yr in in in M CN with table 2-1, fig 2-1, or eqns	Storm #3			S =	5.87		

T NGINEE	RING	CURVE NUMBER (CN)				
BROPER'	TIFS		WC	ORKSHE	ET	
Achieving Success with Innovative	ful Results	WO. NO.	DATE	REVISED	SHEET	OF
PROJECT TITLE	Designs	1842.01 LOCATION	02/10/23	02/21/23	8	11
Regional Food Bank -	Hudson Valley		Iontgomery	,		
CALCULATED BY	APPROVED BY	REF DRAW				
JM	JS					
<u>1. Runoff curve num</u>	ber (CN)	Existing	Proposed	Subarea:	PR -	A4a
	Cover Description			Area	Prod	uct of
Soil Name & Hydrologic Group	(cover type, treatment & cond	itions)	CN	(acres)		Area
A	Woods - Good Condition	30	(40100)	••••		
A	Grass - Fair Condition	1	49	0.42		20.70
A	Row Crops - C+CR - Good Co	ndition	64	0.42		20.70
A			04	0.33		21.22
С	Woods - Fair Condition		73			
C	Grass - Fair Condition		79	0.08		6.66
C	Row Crops - C+CR - Good Co	ndition	81	0.00		0.50
			01	0.01		0.50
D	Woods - Fair Condition		79			
D	Grass - Fair Condition		84	0.70		58.81
D	Row Crops - C+CR - Good Co	ndition	85	1.77		150.28
	Impervious		98	0.39		38.48
			TOTAL =	3.71	296.65	557041
CN (wei	ghted) = <u>total product</u> total area	- =	296.6557 3.7053097			
CN (wei <u>2. Runoff</u> Frequency	ghted) = 80.062 <u>Storm #1 Storm #2</u> yr	Use CN= Storm #3	80		S =	2.50
Rainfall, P Runoff, Q	in in in CN with table 2-1, fig 2-1, or eqns.	2-3 and 2-4)			

TNGINEE	RING	CURVE NUMBER (CN)				
BROPER'	ÍING TIFS		WC	ORKSHE	ET	
Achieving Success with Innovative		WO. NO.	DATE	REVISED	SHEET	OF
PROJECT TITLE	Designs	1842.01 LOCATION	02/21/23		9	11
Regional Food Bank -	Hudson Vallev		Iontgomery	,		
CALCULATED BY	APPROVED BY	REF DRAW				
JM	JS					
<u>1. Runoff curve num</u>	<u>ber (CN)</u>	Existing	Proposed	Subarea:	PR -	A4b
	Cover Description			A r a a	Prod	uct of
Soil Name &	Cover Description	itiono)	CN	Area		Area
Hydrologic Group	(cover type, treatment & cond	-	00	(acres)		Alta
A	Woods - Good Condition	1	30	0.00		
A	Grass - Fair Condition		49	0.00		
Α	Row Crops - C+CR - Good Co	ndition	64	0.00		
C	Woods - Fair Condition		73	0.00		
С	Grass - Fair Condition		79	0.00		
С	Row Crops - C+CR - Good Co	ndition	81	0.00		
D	Woods - Fair Condition		79			
D	Grass - Fair Condition		84	0.99		82.83
D	Row Crops - C+CR - Good Co	ndition	85	0.71		60.21
	Impervious		98	0.16		15.68
			TOTAL =	1.85	158.71	36915
CN (wei	ghted) =total product	- =	158.71369			
	total area		1.8543499			
CN (wei	ghted) = 85.590	Use CN=	86			
2. Runoff					S =	1.63
_	Storm #1 Storm #2	Storm #3				
Frequency Rainfall, P	yr in					
Rainiai, P Runoff, Q	in					
	nd CN with table 2-1, fig 2-1, or eqns.	2-3 and 2-4)			

T NGINEE	RING		CURVE NUMBER (CN)				
DROPER				WO	ORKSHE	ET	
Achieving Success with Innovative	ful Results) —	WO. NO.	DATE	REVISED	SHEET	OF
PROJECT TITLE	Designs		1842.01 LOCATION	02/10/23	07/15/24	10	11
Regional Food Bank -	Hudson Va	lley		/lontgomery	,		
CALCULATED BY	APPROVE		REF DRAW				
JM	JS						
1. Runoff curve num	<u>oer (CN)</u>		Existing	Proposed	Subarea:	PR	- B
		Cover Description			Area	Prod	uct of
Soil Name & Hydrologic Group	(cove	er type, treatment & condi	itions)	CN	(acres)		Area
A	(0010	Woods - Good Condition	,	30	0.44		13.20
A		Grass - Fair Condition	1	49	0.44		8.33
A	Row (Crops - C+CR - Good Co	ndition	64	0.59		37.76
		510ps - C+CIX - G000 C0		04	0.59		57.70
С		Woods - Fair Condition		73	0.07		5.11
C		Grass - Fair Condition		79	0.02		1.58
C	Row (Crops - C+CR - Good Co	ndition	81	0.02		19.44
0	1.000	51003 - 01011 - 0000 00			0.24		13.44
D		Woods - Fair Condition		79	1.03		81.37
D	Grass - Fair Condition			84	0.00		
D	Row Crops - C+CR - Good Co		ndition	85	0.44		37.40
		!					
		Impervious		98	0.00		
				TOTAL =	3.00	204	4.19
CN (weig	nhted) =	total product	- =	204.19			
	ginea,	total area		3			
CN (weig	ghted) =	68.063	Use CN=	68			
	,						
2. Runoff						S =	4.71
Frequency	yr	Storm #1 Storm #2	Storm #3				
Rainfall, P	in						
Runoff, Q	in						
(Use P ar	nd CN with ta	able 2-1, fig 2-1, or eqns.	2-3 and 2-4)			

CNGINEE	RING	CURVE NUMBER (CN)				
ROPER'			WC	ORKSHE	ET	
Achieving Success with Innovative	ful Results	WO. NO.	DATE	REVISED	SHEET	OF
PROJECT TITLE	Designs	1842.01 LOCATION	02/21/23	07/15/24	11	11
Regional Food Bank -	Hudson Valley		Montgomery	,		
	APPROVED BY	REF DRAW				
	33					
1. Runoff curve num	<u>ber (CN)</u>	Existing	Proposed	Subarea:	PR	- C
	Cover Description			Area	Prod	uct of
Soil Name & Hydrologic Group	(cover type, treatment & con-	ditions)	CN	(acres)		Area
A	Woods - Good Condition	,	30	0.00	••••	
A	Grass - Fair Condition		49	0.00		
A	Row Crops - C+CR - Good C		64 64	0.00		
A	Row Crops - C+CR - Good C		04	0.00		
C	Woods - Fair Condition		73	0.04		2.88
C	Grass - Fair Condition		73	0.04		17.38
C			81	0.22		20.25
C	Row Crops - C+CR - Good C		01	0.25		20.25
D	Woods - Fair Condition	<u></u> า	79	0.00		
D	Grass - Fair Condition		84	0.02		1.68
D	Row Crops - C+CR - Good C		85	1.31		111.35
	Impervious		98	0.00		
	·		TOTAL =	1.84	153.5	44539
CN (weig	abtod) – total product		153.54454			
	total area	_	1.8395142			
CN (weig	ghted) = 83.470	Use CN=	83			
<u>2. Runoff</u> Frequency Rainfall, P Runoff, Q (Use P ar	yr in in in CN with table 2-1, fig 2-1, or equa				S =	2.05

APPENDIX 4

TIME OF CONCENTRATION

CALCULATIONS

ROPERTIES		TIME OF CONCENTRATION (Tc) WORKSHEET					
Achieving Successful Results with Innovative Designs		WO. NO.	DATE	REVISED	SHEET	OF	
PROJECT TITLE		1842.01 LOCATION	05/13/22	02/10/23	1	11	
Regional Food Bank - Hudson Valley			Montgome	ry			
CALCULATED BY APPROVED BY JS		REF DRAV	VING(S)				
JM JS							
	Existing	Proposed	Area:		EX - A		
1. <u>Sheet Flow</u>	Segment ID	A - B					
Surface Description (table 3-1)		Fallow					
Manning's roughness coeff., 'n' (table 3-1)		0.05					
Flow length, L (total L <u><</u> 300 ft)	ft	100					
Two-year 24-hour rainfall, P_2	in	3.50					
Land Slope, s	ft/ft	0.080					
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.037				0.037	
2. Shallow Concentrated Flow	Segment ID	B - C	C - D	D - E			
Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved			
Flow length, L	ft	536.5	49.7	426.0			
Watercourse slope, s	ft/ft	0.019	0.034	0.014			
Average velocity, V (figure 3-1)	ft/s	2.200	2.953	1.895			
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.068	0.005	0.062		0.135	
3. <u>Channel Flow</u>	Segment ID						
Cross sectional flow area, a	ft ²						
Wetted perimeter, p _w	ft						
Hydraulic radius, r = a/p _w	ft						
Channel slope, s	ft/ft						
Manning's roughness coefficient, n							
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s						
Flow Length, L	ft						
T. = <u>L</u>	hr						
$T_t = \frac{L}{3600 \text{ V}}$							
Total To Far Watarahad a	r Subaraa	(V44 6+	ne 6 14	and 10	br -	0.17	
Total Tc For Watershed o	n Subarea		אי, דר, אין י	, anu 19)	hr =		
					min =	10.20	

ENGINEERING & SURVEYING	TIME OF CONCENTRATION (Tc) WORKSHEET					
		WO. NO.	DATE	REVISED		OF
Achieving Successful Results with Innovative Designs		1842.01	02/10/23		2	11
PROJECT TITLE		LOCATION				
Regional Food Bank - Hudson Valley CALCULATED BY APPROVED BY		Village of I REF DRAV		ery		
JM JS			110(0)			
	Existing	Proposed	Area:		EX - B	
1. <u>Sheet Flow</u>	Segment ID	A - B				
Surface Description (table 3-1)		Fallow				
Manning's roughness coeff., 'n' (table 3-1)		0.05				
Flow length, L (total L <u><</u> 300 ft)	ft	139				
Two-year 24-hour rainfall, P ₂	in	3.50				
Land Slope, s	ft/ft	0.022				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.082				0.082
2. Shallow Concentrated Flow	Segment ID	B - C				
Surface description (paved or unpaved)		Unpaved				
Flow length, L	ft	127.0				
Watercourse slope, s	ft/ft	0.055				
Average velocity, V (figure 3-1)	ft/s	3.784				
$T_t = \frac{L}{3600 V}$	hr	0.009				0.009
3. <u>Channel Flow</u>	Segment					
	ĪD					
Cross sectional flow area, a	ft ²					
Wetted perimeter, p _w	ft					
Hydraulic radius, r = a/p _w	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n						
$V = \frac{1.49 r^{2/3} s^{1/2}}{}$	ft/s					
n	<i>c</i> ,					
Flow Length, L	ft					
$T_t = \frac{L}{3600 \text{ V}}$	hr					
					T	
Total Tc For Watershed o	r Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.09
					min =	5.40

DROPERTIES		TIME OF CONCENTRATION (Tc) WORKSHEET				
Achieving Successful Results with Innovative Designs		WO. NO.	DATE	REVISED	SHEET	OF
PROJECT TITLE		1842.01 LOCATION	02/21/23		3	11
Regional Food Bank - Hudson Valley		Village of I		rv		
CALCULATED BY APPROVED BY		REF DRAV		,		
JN JN						
	Existing	Proposed	Area:		EX - C	
1. <u>Sheet Flow</u>	Segment ID	A - B				
Surface Description (table 3-1)		Fallow				
Manning's roughness coeff., 'n' (table 3-1)		0.05				
Flow length, L (total L <u><</u> 300 ft)	ft	132				
Two-year 24-hour rainfall, P ₂	in	3.50				
Land Slope, s	ft/ft	0.038				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.063				0.063
		·				
2. Shallow Concentrated Flow	Segment ID	B - C				
Surface description (paved or unpaved)		Unpaved				
Flow length, L	ft	576.0				
Watercourse slope, s	ft/ft	0.014				
Average velocity, V (figure 3-1)	ft/s	1.902				
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.084				0.084
3. <u>Channel Flow</u>	Segment					
	ID					
Cross sectional flow area, a	ft ²					
Wetted perimeter, p _w	ft					
Hydraulic radius, r = a/p _w	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n						
$V = \frac{1.49 r^{2/3} s^{1/2}}{1.49 r^{2/3} s^{1/2}}$	ft/s					
n Flow Length, L	ft					
-						
$T_t = \frac{L}{3600 \text{ V}}$	hr					
				on -1 40)	b <i>r</i> =	0.45
Total Tc For Watershed o	or Subarea	i (Add Ste	eps 6, 11	, and 19)	hr =	0.15
					min =	9.00

PROPERTIES	TIME OF CONCENTRATION (Tc) WORKSHEET					
Achieving Successful Results with Innovative Designs		WO. NO. 1842.01	DATE 05/13/22	REVISED 02/10/23	SHEET 4	OF 11
PROJECT TITLE Regional Food Bank - Hudson Valley CALCULATED BY JM JS		LOCATION Village of I REF DRAV	∖ Montgome		4	
	Existing	Proposed	Area:		PR - A1	
1. <u>Sheet Flow</u>	Segment ID	A - B				
Surface Description (table 3-1)		Grass: S				
Manning's roughness coeff., 'n' (table 3-1)		0.15				
Flow length, L (total L <u><</u> 300 ft)	ft	76				
Two-year 24-hour rainfall, P_2	in	3.50				
Land Slope, s	ft/ft	0.039				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.096				0.096
2. Shallow Concentrated Flow	Segment ID					
Surface description (paved or unpaved)						
Flow length, L	ft					
Watercourse slope, s	ft/ft					
Average velocity, V (figure 3-1)	ft/s					
$T_t = \frac{L}{3600 \text{ V}}$	hr					0.000
3. <u>Channel Flow</u>	Segment ID	B - C	C - D			
Cross sectional flow area, a	ft ²	4.91	7.07			
Wetted perimeter, p _w	ft	7.85	9.43			
Hydraulic radius, r = a/p _w	ft	0.63	0.75			
Channel slope, s	ft/ft	0.019	0.015			
Manning's roughness coefficient, n		0.010	0.010			
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s	14.935	14.964			
Flow Length, L	ft	75.0	23.0			
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.001	0.000			0.002
0000 V		L				
Total Tc For Watershed o	r Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.10
					min =	6.00

ENGINEERING & SURVEYING POPERTIES		TIN		CONCEN VORKSI		NC
Achieving Successful Results with Innovative Designs		WO. NO. 1842.01	DATE 05/13/22	REVISED 02/10/23	SHEET 5	OF 11
PROJECT TITLE Regional Food Bank - Hudson Valley CALCULATED BY APPROVED BY JM JS		LOCATION Village of I REF DRAV	l Montgome		5	
	Existing	Proposed	Area:		PR - A2	
1. <u>Sheet Flow</u>	Segment ID	A - B				
Surface Description (table 3-1)		Paved				
Manning's roughness coeff., 'n' (table 3-1)		0.01				
Flow length, L (total L <u><</u> 300 ft)	ft	125				
Two-year 24-hour rainfall, P_2	in	3.50				
Land Slope, s	ft/ft	0.010				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.030				0.030
2. Shallow Concentrated Flow	Segment ID					
Surface description (paved or unpaved)						
Flow length, L	ft					
Watercourse slope, s	ft/ft					
Average velocity, V (figure 3-1)	ft/s					
$T_t = \frac{L}{3600 \text{ V}}$	hr					0.000
3. <u>Channel Flow</u>	Segment ID	B - C	C - D			
Cross sectional flow area, a	ft ²	4.91	4.91			
Wetted perimeter, p _w	ft	7.85	7.85			
Hydraulic radius, r = a/p _w	ft	0.63	0.63			
Channel slope, s	ft/ft	0.021	0.010			
Manning's roughness coefficient, n		0.010	0.010			
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s	15.709	10.892			
Flow Length, L	ft	120.0	41.0			
$T_{t} = \frac{L}{3600 V}$	hr	0.002	0.001			0.003
Total Tc For Watershed o	r Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.03
					min =	1.80

CNGINEERING			VE OF C	CONCEN	ITRATIO	ON
PROPERTIES			(Tc) V	VORKSI	HEET	
Achieving Successful Results with Innovative Designs		WO. NO. 1842.01	DATE 05/13/22	REVISED 02/21/23	SHEET 6	OF 11
PROJECT TITLE		LOCATION		02/2 1/20	•	••
Regional Food Bank - Hudson Valley		Village of		ry		
CALCULATED BY APPROVED BY JS		REF DRAV	VING(S)			
JM 35						
	Existing	Proposed	Area:		PR - A3a	
1. <u>Sheet Flow</u>	Segment ID	A - B	B - C			
Surface Description (table 3-1)		Paved	Grass: S			
Manning's roughness coeff., 'n' (table 3-1)		0.01	0.15			
Flow length, L (total L < 300 ft)	ft	141	26			
Two-year 24-hour rainfall, P_2	in	3.50	3.50			
Land Slope, s	ft/ft	0.026	0.250			
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.023	0.019			0.042
2. Shallow Concentrated Flow	Segment ID	D - E	F - G	G - H		
Surface description (paved or unpaved)		Unpaved	Unpaved	Unpaved		
Flow length, L	ft	167.0	668.0	94.0		
Watercourse slope, s	ft/ft	0.005	0.006	0.010		
Average velocity, V (figure 3-1)	ft/s	1.141	1.250	1.613		
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.041	0.148	0.016		0.205
3. <u>Channel Flow</u>	Segment ID	C - D	E-F			
Cross sectional flow area, a	ft ²	4.91	4.91			
Wetted perimeter, p_w	ft	7.85	7.85			
Hydraulic radius, r = a/p _w	ft	0.63	0.63			
Channel slope, s	ft/ft	0.010	0.036			
Manning's roughness coefficient, n		0.010	0.010			
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s	10.892	20.552			
Flow Length, L	ft	77.0	68.0			
-	hr	0.002	0.001			0.003
$T_t = \frac{L}{3600 V}$		0.002	0.001			
Total Tc For Watershed or	r Subarea	ı (Add Ste	eps 6, 11	, and 19)	hr =	0.25
					min =	15.00

ENGINEERING & SURVEYING ROPERTIES		TIN		CONCEN WORKSI		N
Achieving Successful Results with Innovative Designs		WO. NO.	DATE	REVISED	SHEET	OF
PROJECT TITLE		1842.01 LOCATION	02/21/23		7	11
Regional Food Bank - Hudson Valley		Village of I		ery		
CALCULATED BY APPROVED BY		REF DRAV		-		
JM JS						
	Existing	Proposed	Area:		PR - A3b	
1. <u>Sheet Flow</u>	Segment ID	A - B				
Surface Description (table 3-1)		Fallow				
Manning's roughness coeff., 'n' (table 3-1)		0.05				
Flow length, L (total L <u><</u> 300 ft)	ft	142				
Two-year 24-hour rainfall, P_2	in	3.50				
Land Slope, s	ft/ft	0.012				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.104				0.104
2. Shallow Concentrated Flow	Segment ID	B - C	C - D			
Surface description (paved or unpaved)		Unpaved	Unpaved			
Flow length, L	ft	414.0	41.0			
Watercourse slope, s	ft/ft	0.031	0.050			
Average velocity, V (figure 3-1)	ft/s	2.827	3.608			
$T_t = \frac{L}{3600 \text{ V}}$	hr	0.041	0.003			0.044
3. <u>Channel Flow</u>	Segment					
	ID					
Cross sectional flow area, a	ft ²					
Wetted perimeter, p _w	ft					
Hydraulic radius, r = a/p _w	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n						
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s					
n						
Flow Length, L	ft					
$T_t = \frac{L}{3600 V}$	hr					
		·I				
Total Tc For Watershed or	r Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.15
					min =	9.00

				CONCEN		NC
DROPERTIES			. ,	VORKSI		
Achieving Successful Results with Innovative Designs		WO. NO. 1842.01	DATE 02/10/23	REVISED 02/21/23	SHEET 8	OF 11
PROJECT TITLE		LOCATION				
Regional Food Bank - Hudson Valley		Village of		ry		
CALCULATED BY APPROVED BY JS		REF DRAV	VING(S)			
JNI J3						
	Existing	Proposed	Area:		PR - A4a	
1. <u>Sheet Flow</u>	Segment ID	A - B				
Surface Description (table 3-1)		Grass: S				
Manning's roughness coeff., 'n' (table 3-1)		0.15				
Flow length, L (total L \leq 300 ft)	ft	136				
Two-year 24-hour rainfall, P_2	in	3.50				
Land Slope, s	ft/ft	0.015				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.226				0.226
ζ.						
2. Shallow Concentrated Flow	Segment ID	B - C	D - E			
Surface description (paved or unpaved)		Unpaved	Unpaved			
Flow length, L	ft	995.0	97.0			
Watercourse slope, s	ft/ft	0.050	0.010			
Average velocity, V (figure 3-1)	ft/s	3.608	1.613			
T _t = <u>L</u> 3600 V	hr	0.077	0.017			0.093
3. <u>Channel Flow</u>	Segment ID	C - D				
Cross sectional flow area, a	ft ²	4.91				
Wetted perimeter, p _w	ft	7.85				
Hydraulic radius, r = a/p _w	ft	0.63				
Channel slope, s	ft/ft	0.005				
Manning's roughness coefficient, n		0.010				
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s	7.702				
Flow Length, L	ft	60.0				
T. = <u> </u>	hr	0.002				0.002
$T_t = \frac{L}{3600 V}$		0.002				0.002
Total Tc For Watershed o	r Subarea	ı (Add Ste	eps 6, 11	, and 19)	hr =	0.32
		-			min =	19.20

CNGINEERING			NE OF C	CONCEN	ITRATIO	NC
& SURVEYING			(Tc) V	VORKSI	HEET	
Achieving Successful Results with Innovative Designs		WO. NO.	DATE	REVISED	SHEET	OF
		1842.01	02/21/23		9	11
PROJECT TITLE		LOCATION Village of I		. M. /		
Regional Food Bank - Hudson ValleyCALCULATED BYAPPROVED BY		REF DRAV	VING(S)	ir y		
JM JS			- ()			
	Existing	Proposed	Area:		PR - A4b	
1. Sheet Flow	Segment					
	ID	A-B				
Surface Description (table 3-1)		Grass: S				
Manning's roughness coeff., 'n' (table 3-1)		0.15				
Flow length, L (total L \leq 300 ft)	ft	91				
Two-year 24-hour rainfall, P_2	in	3.50				
Land Slope, s	ft/ft	0.011				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{0}^{0.5} s^{0.4}}$	hr	0.184				0.184
P_2 S						
	0					
2. Shallow Concentrated Flow	Segment ID	B - C	D - E			
Surface description (paved or unpaved)		Unpaved	Unpaved			
Flow length, L	ft	317.0	97.0			
Watercourse slope, s	ft/ft	0.019	0.010			
Average velocity, V (figure 3-1)	ft/s	2.218	1.613			
$T_t = \frac{L}{3600 V}$	hr	0.040	0.017			0.056
3600 V						
	•	· · · · · ·				
3. <u>Channel Flow</u>	Segment ID	C - D				
Cross sectional flow area, a	ft ²	4.91				
Wetted perimeter, p _w	ft	7.85				
Hydraulic radius, r = a/p _w	ft	0.63				
Channel slope, s	ft/ft	0.005				
Manning's roughness coefficient, n		0.010				
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s	7.702				
	6	00.0				
Flow Length, L	ft	60.0				
$T_t = \frac{L}{3600 V}$	hr	0.002				0.002
Total Tc For Watershed or	r Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.24
					min =	14.40

		TIN		CONCEN		NC
ROPERTIES			(Tc) V	VORKSI	HEET	
Achieving Successful Results with Innovative Designs		WO. NO. 1842.01	DATE 02/10/23	REVISED	SHEET 10	OF 11
PROJECT TITLE		LOCATION				
Regional Food Bank - Hudson Valley		Village of I		ry		
CALCULATED BY APPROVED BY JS		REF DRAW	VING(S)			
JW 55						
	Existing	Proposed	Area:		PR - B	
1. <u>Sheet Flow</u>	Segment ID	A - B				
Surface Description (table 3-1)		Fallow				
Manning's roughness coeff., 'n' (table 3-1)		0.05				
Flow length, L (total L < 300 ft)	ft	139				
Two-year 24-hour rainfall, P_2	in	3.50				
Land Slope, s	ft/ft	0.022				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.082				0.082
-		II		I I		
2. Shallow Concentrated Flow	Segment ID	B - C				
Surface description (paved or unpaved)		Unpaved				
Flow length, L	ft	127.0				
Watercourse slope, s	ft/ft	0.055				
Average velocity, V (figure 3-1)	ft/s	3.784				
$T_{t} = \frac{L}{3600 V}$	hr	0.009				0.009
				· I		
3. <u>Channel Flow</u>	Segment ID					
Cross sectional flow area, a	ft ²					
Wetted perimeter, p _w	ft					
Hydraulic radius, r = a/p _w	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n						
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s					
n						
Flow Length, L	ft					
$T_t = \frac{L}{3600 V}$	hr					
3600 V						
Total Tc For Watershed or	r Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.09
			'	,	min =	5.40
						-

		TIN		CONCEN		NC
DROPERTIES			. ,	VORKSI	HEET	
Achieving Successful Results with Innovative Designs		WO. NO. 1842.01	DATE 02/23/23	REVISED	SHEET 11	OF 11
PROJECT TITLE		LOCATION				
Regional Food Bank - Hudson Valley		Village of M		ry		
CALCULATED BY APPROVED BY JS		REF DRAW	/ING(S)			
	Existing	Proposed	Area:		PR - C	
1. <u>Sheet Flow</u>	Segment ID	A - B				
Surface Description (table 3-1)		Fallow				
Manning's roughness coeff., 'n' (table 3-1)		0.05				
Flow length, L (total L \leq 300 ft)	ft	132				
Two-year 24-hour rainfall, P ₂	in	3.50				
Land Slope, s	ft/ft	0.038				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.063				0.063
-		<u> </u>		<u> </u>		
2. Shallow Concentrated Flow	Segment ID	B - C				
Surface description (paved or unpaved)		Unpaved				n
Flow length, L	ft	576.0				
Watercourse slope, s	ft/ft	0.014				
Average velocity, V (figure 3-1)	ft/s	1.902				
$T_t = \frac{L}{3600 V}$	hr	0.084				0.084
	0					
3. <u>Channel Flow</u>	Segment ID					
Cross sectional flow area, a	ft ²					
Wetted perimeter, p _w	ft					
Hydraulic radius, r = a/p _w	ft					
Channel slope, s	ft/ft					
Manning's roughness coefficient, n						
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s					
n						
Flow Length, L	ft					
$T_t = \frac{L}{3600 \text{ V}}$	hr					
3000 V						l
Total Tc For Watershed o	r Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.15
					min =	9.00

APPENDIX 5 WATER QUALITY VOLUME CALCULATIONS & RUNOFF REDUCTION VOLUME CALCULATIONS

TNGINEER	INC	3		WAT	WATER QUALITY VOLUME (WQ _v)					
& SURVEYI	NG				CALCU	LATION	SHEET			
Achieving Successful				WO. NO.	DATE	REVISED	SHEET	OF		
PROJECT TITLE	signs			1842.01 LOCATION	05/13/22	07/15/24	1	5		
Regional Food Bank - Hu	udson '	Vallev		Village of I		v				
CALCULATED BY		APPROVED BY					Point Design	ation		
JM		JS								
		WC		,*A)/(12))					
			90%	Total	Total	R _v	WQ _v	WQv		
Drainage	Area		Rainfall Event #	Drainage	Imperviou	(0.05 +	Required	Required		
			(P)	Area (A)	s Area(I)	0.009*1%)	(Ac-ft)	(ft ³)		
SITE			1.40	19.90	3.75	0.220	0.510	22,215.6		
HSG Area (A		%	S				5 * S * I) / (′			
A 7.5		38%	0.55	P =	1.40		/ (,		
В 0.0		0%	0.40	S =	0.35					
C 3.2		16%	0.30	=	3.75					
D 9.1		46%	0.20	RR _{v MIN} 0.145		Ac-ft				
	-	_		ented ?		Contributing	Total	Total		
Green Tech	noloa	v	Implem		Drainage Area	Drainage	Drainage	Impervious		
			Yes	No	Reduction	Area Reduction	Area Reduction	Area Reduction		
Area Reduction Practices										
Conservation of Natural	Areas				_	_	_	_		
Sheet Flow to Riparian B		or Filter Strips		v	-	_	_	_		
Tree Planting / Tree Box				V	-	_	_	_		
				Subtotals			0.00	0.00		
			Р	A	I	R _v	WQ _v	RR _{v AREA}		
Revised WQ _v after A	Area De	eductions	1.40	19.90	3.75	0.220	0.510	0.000		
Disconnection of Rooftop F	Runoff			vious Area R		0.00 Acres				
			P	Α		R _v WQ _v				
Revised WQ _v after Impe	ervious	s Disconnect	1.40	19.90	3.75	0.220	0.510	0.000		
Source Control WQ _v Treat	ment F	Practices	Yes	No	WQ _v	RR _{v sc} *	(A) Reduction	(I) Reduction		
Vegetated Open Swales					0.162	0.032	7.79	1.11		
Rain Garden				~	-	-	-	-		
Green Roof				~	-	-	-	-		
Stormwater Planters				~	-	-	-	-		
Rain Tanks / Cisterns				v	-	-	-	-		
Porous Pavement				~	-	-	-	-		
Standard SMP's with RRv	Capac	ity				<u>I</u>	1			
Infiltration	•	-		V	-	-	-	-		
Bio-Retention			~		0.170	0.136	2.43	1.48		
Grassed Dry Swales (Op	en Cha	annel)		~	-	-	-	-		
		· · · · ·		Subtotals	0.332	0.168	10.22	2.59		
Is The Total RR _v (RR _{v AF}	REA + R	R _{v IMP} + RR _{v sc})	0.168		_{v MIN} ?	0.145	Y			
		Р	<u> </u>		R _v	WQ _v (Ac-ft)				
		Duentless	-							
WQ_v Required by Sta	andard	Practices	1.40	9.68	1.16	0.158	0.178	7,765.3		

ENGINEER & SURVEYI DROPERT	RUNOFF REDUCTION VOLUME (RRv) CALCULATION SHEET						
Achieving Successful Results with Innovative Designs			WO. NO. 1842.01	DATE 02/10/23	REVISED 02/21/23	SHEET 2	OF 5
PROJECT TITLE	LOCATION	1					
Regional Food Bank - Hu CALCULATED BY	dson Valley APPROVED B	4	Village of Montgomery Stormwater Management Design Point Designation				
JM	JS	•		- managemen		in Dooignat	
		BIO-RE	TENTION				
Requirement Checks		Yes	<u>No</u>	<u>Notes:</u>			
Runoff enters as sheet flow or through a dissipator							
Pretreatment provided		<i>✓</i>					
Design Complies with Required Elements of Practice		\checkmark					
Infiltration designed to exfiltrate through bottom of practice only?		\checkmark					
Drainage Area (Ac.)	2.43						
Impervious Area (Ac.)	1.48						
Rainfall Event # (P)	1.40						
Rv	0.598						
WQv _{REQ'D}	0.170						
A _f (ft ²)	6,175.0	Surface area of	f filter bed				
d _t (ft)	2.5	depth of filter be	ed				
k (ft/day)	0.5	coefficient of permability of filter media					
h _f (ft)	0.50	average height of water above filter bed					
t _f (days)	2.00	design filter bed drain time					
V _f (ft ³)	7,410.0	Design volume	of filter (WC	Q_v Provided)			
V _f > WQv _{REQ'D}	YES						
HSG Soil Classification	A						
RRv Reduction All	owance						
Soil Group A or B	80%						
Soil Group C or D	40%						
	-						
RRv	0.136						
		4					

PROPER	RUNOFF REDUCTION VOLUME (RRv) CALCULATION SHEET								
Achieving Successf with Innovative D	ul Results Pesigns		WO. NO. 1842.01	DATE 2/21/2023	REVISED	SHEET 3	OF 5		
PROJECT TITLE	LOCATION								
Regional Food Bank - Hu				Montgomery	<u> </u>				
	APPROVED JS	BY	Stormwate	r Management	Practice Facili	ity Designatio	n		
VEGETATED SWALE - NORTH 1									
Requirement Che	ecks	Yes	<u>No</u>	Notes:					
Contributing drainage area to swale < 5 Ac. (if NO, Runoff Reduction can't be used)		1							
WQv Peak Flow $(Q_{WQv}) \le 3$ c	fs	\checkmark							
Q _{WQv} Velocity ≤ 1.0 f/s		\checkmark							
Q _{WQv} Flow depth ≤ 4"		\checkmark							
Swale is trapezoidal or parabolic & bottom width between 2' & 6'		\checkmark							
Side Slopes <u>></u> 3:1		\checkmark							
Swale slope ≥ 0.5% & ≤ 4.0%		\checkmark							
Swale conveys the 10-yr Storm with min. 6" of freeboard with velocity \leq 5.0 f/s		\checkmark							
Swale provide sufficient retention time ≥ 5 min sheet flow or multiple point discharges ≥10 min direct point discharge		\checkmark							
DA to Swale	0.83		Channel Le	ength (ft)	167.00				
Impervious Area	0.37		WQv Depth	n of Flow (Ft)	0.3331	4.0	inches		
Rainfall Event # (P)	1.40		WQv Veloc	ity	0.30		-		
Rv	0.451		Retention 1	īme (Min)	9.4				
WQv Peak Flow (QWQv)	0.044		Q _{10-yr} (cfs)		1.94				
Qr (Runoff Volume)	0.632		D _{10-yr} (ft)		0.706				
CN	84		V _{10-yr} (f/s)		0.45				
Tc (hours)	0.030		Swale Desi	gn Depth (ft)	1.00				
la	0.381		Available F	reeboard	0.29				
la/P	0.272		HSG Soil C	lassification	А				
Qu (from Exhibit 4-III (TR-55))	600								
Q _{WQv}	0.492		RRv Reduction Allowance						
Swale Design			Soil Gr	oup A or B	20%				
Bottom Width (ft)	4.000		Soil Gr	oup C or D	10%				
Side Slopes	3.000								
Depth (ft)	1.000		WQv to Sw	ale	0.044				
Area of Flow (ft ²)	7.00		RRv		0.009				
Wetted Perimeter	10.32								
Slope (ft/ft)	0.005								
Mannings "n": 0.150 (per page L-2		2 NYSDEC I	Manual)						
Q _{swale} (Design) 3.79									
V _{swale} (Design)	0.54								

PROPERT Achieving Successfi with Innovative D	RUNOFF REDUCTION VOLUME (RRv) CALCULATION SHEET WO. NO. DATE REVISED SHEET								
PROJECT TITLE	esigns		1842.01 LOCATION	2/21/2023		4	5		
Regional Food Bank - Hu		Montgomery							
	APPROVED		Stormwater Management Practice Facility Designation						
JM	JS								
VEGETATED SWALE - NORTH 2									
Requirement Che	<u>No</u>	<u>Notes:</u>							
Contributing drainage area to swale < 5 Ac. (if NO, Runoff Reduction can't be used)		√							
WQv Peak Flow $(Q_{WQv}) \le 3$ c	WQv Peak Flow (Q _{WQv}) ≤ 3 cfs								
Q _{WQv} Velocity ≤ 1.0 f/s		\checkmark							
Q _{WQv} Flow depth ≤ 4"		\checkmark							
Swale is trapezoidal or parabolic & bottom width between 2' & 6'		\checkmark							
Side Slopes <u>></u> 3:1		\checkmark							
Swale slope ≥ 0.5% & ≤ 4.0%		\checkmark							
Swale conveys the 10-yr Storm with min. 6" of freeboard with velocity \leq 5.0 f/s		\checkmark							
Swale provide sufficient retention time ≥ 5 min sheet flow or multiple point discharges ≥10 min direct point discharge		✓							
DA to Swale	3.25		Channel Le	ength (ft)	678.00				
Impervious Area	0.35		WQv Depth	n of Flow (Ft)	0.2595	3.1	inches		
Rainfall Event # (P)	1.40		WQv Veloc	ity	0.29		-		
Rv	0.147		Retention 1	īme (Min)	39.0				
WQv Peak Flow (QWQv)	0.056		Q _{10-yr} (cfs)		1.12				
Qr (Runoff Volume)	0.206		D _{10-yr} (ft)		0.609				
CN	72		V _{10-yr} (f/s)		0.48				
Tc (hours)	0.250		Swale Desi	gn Depth (ft)	1.25				
la	0.778		Available F	reeboard	0.64				
la/P	0.556	_	HSG Soil C	lassification	А				
Qu (from Exhibit 4-III (TR-55))	200								
Q _{WQv}	0.209		RRv Reduction Allowance						
Swale Design			Soil Gr	oup A or B	20%				
Bottom Width (ft)	2.000		Soil Gr	oup C or D	10%				
Side Slopes	3.000								
Depth (ft)	1.250	I	WQv to Sw	ale	0.056				
Area of Flow (ft ²)	7.19		RRv		0.011				
Wetted Perimeter	9.91								
Slope (ft/ft)	0.008								
Mannings "n": 0.150 (per page L-2		2 NYSDEC I	Manual)						
Q _{swale} (Design) 5.16									
V _{swale} (Design)	0.72								

ENGINEE <i>a survey</i> DROPER			RUNOFF REDUCTION VOLUME (RRv) CALCULATION SHEET				
Achieving Successf with Innovative D	ul Results Designs		WO. NO. 1842.01	DATE 2/21/2023	REVISED	SHEET	OF 5
PROJECT TITLE			LOCATION			5	5
Regional Food Bank - Hu	udson Valley APPROVED			Montgomery			
	BY	Stormwate	r Management	Practice Facil	ity Designatio	n	
	JS	VEGETA	L FED SWA	LE - SOUTH	1		
Requirement Che	ecks	<u>Yes</u>	<u>No</u>	Notes:			
Contributing drainage area to sw (if NO, Runoff Reduction can't be		\checkmark					
WQv Peak Flow $(Q_{WQv}) \le 3$ c	fs	\checkmark					
Q _{WQv} Velocity ≤ 1.0 f/s		\checkmark					
Q _{WQv} Flow depth ≤ 4"		\checkmark					
Swale is trapezoidal or parab width between 2' & 6'	olic & bottom	\checkmark					
Side Slopes <u>></u> 3:1		\checkmark					
Swale slope <u>></u> 0.5% & <u><</u> 4.0%	6						
Swale conveys the 10-yr Storm v freeboard with velocity \leq 5.0 f/s	with min. 6" of						
Swale provide sufficient reter ≥ 5 min sheet flow or multiple po ≥10 min direct point discharge		\checkmark					
DA to Swale	3.71		Channel Le	ength (ft)	995.00		
Impervious Area	0.39		WQv Deptl	n of Flow (Ft)	0.3307	4.0	inches
Rainfall Event # (P)	1.40		WQv Veloo	city	0.39		
Rv	0.145		Retention 7	Γime (Min)	43.0		
WQv Peak Flow (QWQv)	0.063		Q _{10-yr} (cfs)		1.57		
Qr (Runoff Volume)	0.202		D _{10-yr} (ft)		0.679		
CN	79		V _{10-yr} (f/s)		0.57		
Tc (hours)	0.320			ign Depth (ft)	1.25		
la	0.532		Available F	reeboard	0.57		
la/P	0.380		HSG Soil C	Classification	А		
Qu (from Exhibit 4-III (TR-55))	325						
Q _{WQv}	0.381			Reduction Allo	owance		
Swale Design	<u> </u>			oup A or B	20%		
Bottom Width (ft)	2.000		Soil Gr	oup C or D	10%		
Side Slopes	3.000						
Depth (ft)	1.250		WQv to Sw	/ale	0.063	1	
Area of Flow (ft ²)	7.19		RRv		0.013		
Wetted Perimeter	9.91						
Slope (ft/ft)	0.010	l,					
Mannings "n":	0.150	(per page L-2	2 NYSDEC	Manual)			
Q _{swale} (Design)	5.77						
V _{swale} (Design)	0.80						

This page is left intentionally blank

PROJECT TITLE Regional Food Bank - Hudson Valley CALCULATED BY JM			WO. NO. 1842.01 LOCATION Village of M REF DRAW	lontgomery /ING(S)	
	W0	$Q_v = (P * R)$		2)	
Drainage Area	90% Rainfail Event Number (P)	Impervious Area (I)	Drainage Area (A)	R _v (0.05 + 0.009 * I%)	WQ _v (Ac-ft)
Forebay A1	1.40	1.48	2.43	0.598	7,387 0.170
Forebay A2	1.40	1.00	2.14	0.471	5,118 0.117

This page is left intentionally blank

	EERINC VEYING ERTIES	3	- V	NQv Provided i	n SMP
Achieving Su	ccessful Results	,0	WO. NO.		
	vative Designs		1842.01		1 2
PROJECT TITLE Regional Food Bai	nk - Hudson V	allov		n Montgomery	
CALCULATED BY			REF DRA		
JM	JS				
				Drainage Area:	2.43 acres
	Pond:	Forebay A	1	Impervious Area:	1.48 acres
	Pretreatmen				0.170 ac-ft
Required Total		ent Volume:		cubic feet	
Water Surface	Surface	Average	Difference	Incremental	Total Storage
Elevation	Area	Area	in Elevation	Storage	Volume
(Feet)	(Square Feet)	(Square Feet)	(Feet)	(Cubic Feet)	(Cubic Feet)
379.00	819.8				0.0
380.00	1,505.0	1,162.4	1.0	1,162.4	1,162.4
381.00	2,640.0	2,072.5	1.0	2,072.5	3,234.9
382.00	4,019.0	3,329.5	1.0	3,329.5	6,564.4
383.00	5,933.0	4,976.0	1.0	4,976.0	11,540.4
		Stage St	torage Cu	rve	
383.50 -					
383.00					
382.50					
382.00 381.50 381.00 380.50 380.50					
Z 381.50					
B 381.00					
380.50					
H 380.00					
379.50					
379.00					
378.50					
0	2,000	4,000	6,000 8,00	00 10,000 12,	000 14,000
		STORA	GE VOLUME (Cu	bic Feet)	

	EERING ERTIES	3	V	NQv Provided i	n SMP	
Achieving Su	ccessful Results	- D	WO. NO.		SHEET OF	
	vative Designs		1842.01	05/13/22 07/15/24	2 2	
PROJECT TITLE Regional Food Ba	nk Hudson V			N Montgomery		
CALCULATED BY			REF DRA			
JM	JS					
	•		•	Drainage Area:	2.14 acres	
	Pond:	Forebay A	2	Impervious Area:	1.00 acres	
	Pretreatmen			-	0.117 ac-ft	
Required Total	Pre-Treatme	ent Volume:	-	cubic feet		
Water Surface	Surface	Average	Difference	Incremental	Total Storage	
Elevation	Area	Area	in Elevation	Storage	Volume	
(Feet)	(Square Feet)	(Square Feet)	(Feet)	(Cubic Feet)	(Cubic Feet)	
380.00	783.1				0.0	
381.00	1,261.2	1,022.2	1.0	1,022.2	1,022.2	
382.00	1,839.9	1,550.6	1.0	1,550.6	2,572.7	
383.00	2,519.1	2,179.5	1.0	2,179.5	4,752.2	
383.50	2,896.3	2,707.7	0.5	1,353.8	6,106.0	
384.00	3,299.3	3,097.8	0.5	1,548.9	7,654.9	
		Stage St	torage Cu	rve		
384.50 -						
384.00						
383.50						
383.00 382.50 382.00 382.00 381.50 381.00						
z 382.50						
8 381.50						
H 381.00						
380.50						
380.00						
379.50 + + + + + + + + + + + + + + + + + + +						

APPENDIX 6

HYDROGRAPH

SUMMARIES & DIAGRAMS

This page is left intentionally blank

Basin Model

Hydrology Studio v 3.0.0.24

07-16-2024

Hydrograph by Return Period

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

Hydrology Studio v 3.0.0.24

Hydrograph	Hydrograph	Peak Outflow (cfs)							
Туре	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
NRCS Runoff	EX-A	8.946				28.50			66.96
NRCS Runoff	EX-B	1.633				8.735			24.74
NRCS Runoff	EX-C	3.384				8.570			17.87
NRCS Runoff	PR-A1	1.950				6.451			15.36
Pond Route	Bio-Retention	0.050				2.267			9.048
NRCS Runoff	PR-A2	1.229				4.937			12.78
Pond Route	Pocket Pond	0.044				0.169			4.605
NRCS Runoff	PR-A3a	2.669				8.506			20.03
NRCS Runoff	PR-A3b	0.129				1.068			3.405
NRCS Runoff	PR-A4a	2.873				7.985			17.56
NRCS Runoff	PR-A4b	2.277				5.338			10.68
NRCS Runoff	PR-B	1.190				5.834			16.12
NRCS Runoff	PR-C	2.216				5.612			11.70
Junction	Design Point A	7.836				23.85			64.03
	TypeNRCS RunoffNRCS RunoffNRCS RunoffNRCS RunoffPond RouteNRCS RunoffNRCS Runoff	Hydrograph TypeHydrograph NameNRCS RunoffEX-ANRCS RunoffEX-BNRCS RunoffEX-CNRCS RunoffPR-A1Pond RouteBio-RetentionNRCS RunoffPR-A2Pond RoutePocket PondNRCS RunoffPR-A3aNRCS RunoffPR-A3bNRCS RunoffPR-A4aNRCS RunoffPR-A4bNRCS RunoffPR-A4bNRCS RunoffPR-BNRCS RunoffPR-BNRCS RunoffPR-A5	Hydrograph TypeHydrograph NameINRCS RunoffEX-A8.946NRCS RunoffEX-B1.633NRCS RunoffEX-C3.384NRCS RunoffPR-A11.950Pond RouteBio-Retention0.050NRCS RunoffPR-A21.229Pond RoutePocket Pond0.044NRCS RunoffPR-A3a2.669NRCS RunoffPR-A4a2.873NRCS RunoffPR-A4b2.277NRCS RunoffPR-A4b2.277NRCS RunoffPR-B1.190NRCS RunoffPR-B2.216	Hydrograph TypeHydrograph Name1-yr2-yrNRCS RunoffEX-A8.9461.633NRCS RunoffEX-B1.6331.633NRCS RunoffEX-C3.3841.633NRCS RunoffPR-A11.9501.050Pond RouteBio-Retention0.0501.229Pond RoutePocket Pond0.0441.229NRCS RunoffPR-A21.2291.229NRCS RunoffPR-A3a2.6691.100NRCS RunoffPR-A3a2.8731.219NRCS RunoffPR-A4a2.8731.190NRCS RunoffPR-A4b2.2161.190	Hydrograph TypeHydrograph Name1-yr2-yr3-yrNRCS RunoffEX-A8.946NRCS RunoffEX-B1.633NRCS RunoffEX-C3.384NRCS RunoffPR-A11.950Pond RouteBio-Retention0.050NRCS RunoffPR-A21.229Pond RoutePocket Pond0.044NRCS RunoffPR-A3a2.669NRCS RunoffPR-A3b0.129NRCS RunoffPR-A4a2.873NRCS RunoffPR-A4b2.277NRCS RunoffPR-B1.190NRCS RunoffPR-B1.190NRCS RunoffPR-B1.190NRCS RunoffPR-B1.190NRCS RunoffPR-B1.190NRCS RunoffPR-B1.190NRCS RunoffPR-B1.190NRCS RunoffPR-C2.216	Hydrograph TypeHydrograph NameII <td>Hydrograph TypeHydrograph NameHydrograph 1-yr2-yr3-yr5-yr10-yrNRCS RunoffEX-A8.946II28.50NRCS RunoffEX-B1.633II8.735NRCS RunoffEX-C3.384II8.570NRCS RunoffPR-A11.950II6.451Pond RouteBio-Retention0.050II2.267NRCS RunoffPR-A21.229III4.937Pond RoutePocket Pond0.044II0.1691.068NRCS RunoffPR-A3a2.669III1.068NRCS RunoffPR-A4a2.873III1.068NRCS RunoffPR-A4a2.873III5.338NRCS RunoffPR-A4b2.277III5.338NRCS RunoffPR-A4b2.277III5.338NRCS RunoffPR-A4b2.277III5.338NRCS RunoffPR-A4b2.277III5.338NRCS RunoffPR-A4b1.190II5.834NRCS RunoffPR-B1.190II5.834NRCS RunoffPR-A4b2.216II5.612NRCS RunoffPR-A4bIIIIIIIIIIIIIIIIII<!--</td--><td>Hydrograph TypeHydrograph NameI-yr2-yr3-yr5-yr10-yr25-yrNRCS RunoffEX-A8.946II28.50INRCS RunoffEX-B1.633II8.735INRCS RunoffEX-C3.384II8.570INRCS RunoffPR-A11.950III6.451Pond RouteBio-Retention0.050III4.937Pond RoutePr-A21.229II4.937INRCS RunoffPR-A3a2.669II1.068INRCS RunoffPR-A3b0.129III1.068INRCS RunoffPR-A4a2.873IIIIINRCS RunoffPR-A4b2.277IIIIINRCS RunoffPR-A4b2.277IIIIIINRCS RunoffPR-A4b2.277IIIIIIIIINRCS RunoffPR-B1.190II<!--</td--><td>Hydrograph TypeHydrograph NameHydrograph 1yr2-yr3-yr5-yr10-yr25-yr50-yrNRCS RunoffEX-A8.946II28.50IINRCS RunoffEX-B1.633II8.735IINRCS RunoffEX-C3.384II8.570IINRCS RunoffPR-A11.950II6.451IIPond RouteBio-Retention0.050IIIIIPond RoutePre-A21.229II4.937IIINRCS RunoffPR-A3a2.669IIIIIIINRCS RunoffPR-A3a2.673IIIIIIIIINRCS RunoffPR-A4a2.873II</td></td></td>	Hydrograph TypeHydrograph NameHydrograph 1-yr2-yr3-yr5-yr10-yrNRCS RunoffEX-A8.946II28.50NRCS RunoffEX-B1.633II8.735NRCS RunoffEX-C3.384II8.570NRCS RunoffPR-A11.950II6.451Pond RouteBio-Retention0.050II2.267NRCS RunoffPR-A21.229III4.937Pond RoutePocket Pond0.044II0.1691.068NRCS RunoffPR-A3a2.669III1.068NRCS RunoffPR-A4a2.873III1.068NRCS RunoffPR-A4a2.873III5.338NRCS RunoffPR-A4b2.277III5.338NRCS RunoffPR-A4b2.277III5.338NRCS RunoffPR-A4b2.277III5.338NRCS RunoffPR-A4b2.277III5.338NRCS RunoffPR-A4b1.190II5.834NRCS RunoffPR-B1.190II5.834NRCS RunoffPR-A4b2.216II5.612NRCS RunoffPR-A4bIIIIIIIIIIIIIIIIII </td <td>Hydrograph TypeHydrograph NameI-yr2-yr3-yr5-yr10-yr25-yrNRCS RunoffEX-A8.946II28.50INRCS RunoffEX-B1.633II8.735INRCS RunoffEX-C3.384II8.570INRCS RunoffPR-A11.950III6.451Pond RouteBio-Retention0.050III4.937Pond RoutePr-A21.229II4.937INRCS RunoffPR-A3a2.669II1.068INRCS RunoffPR-A3b0.129III1.068INRCS RunoffPR-A4a2.873IIIIINRCS RunoffPR-A4b2.277IIIIINRCS RunoffPR-A4b2.277IIIIIINRCS RunoffPR-A4b2.277IIIIIIIIINRCS RunoffPR-B1.190II<!--</td--><td>Hydrograph TypeHydrograph NameHydrograph 1yr2-yr3-yr5-yr10-yr25-yr50-yrNRCS RunoffEX-A8.946II28.50IINRCS RunoffEX-B1.633II8.735IINRCS RunoffEX-C3.384II8.570IINRCS RunoffPR-A11.950II6.451IIPond RouteBio-Retention0.050IIIIIPond RoutePre-A21.229II4.937IIINRCS RunoffPR-A3a2.669IIIIIIINRCS RunoffPR-A3a2.673IIIIIIIIINRCS RunoffPR-A4a2.873II</td></td>	Hydrograph TypeHydrograph NameI-yr2-yr3-yr5-yr10-yr25-yrNRCS RunoffEX-A8.946II28.50INRCS RunoffEX-B1.633II8.735INRCS RunoffEX-C3.384II8.570INRCS RunoffPR-A11.950III6.451Pond RouteBio-Retention0.050III4.937Pond RoutePr-A21.229II4.937INRCS RunoffPR-A3a2.669II1.068INRCS RunoffPR-A3b0.129III1.068INRCS RunoffPR-A4a2.873IIIIINRCS RunoffPR-A4b2.277IIIIINRCS RunoffPR-A4b2.277IIIIIINRCS RunoffPR-A4b2.277IIIIIIIIINRCS RunoffPR-B1.190II </td <td>Hydrograph TypeHydrograph NameHydrograph 1yr2-yr3-yr5-yr10-yr25-yr50-yrNRCS RunoffEX-A8.946II28.50IINRCS RunoffEX-B1.633II8.735IINRCS RunoffEX-C3.384II8.570IINRCS RunoffPR-A11.950II6.451IIPond RouteBio-Retention0.050IIIIIPond RoutePre-A21.229II4.937IIINRCS RunoffPR-A3a2.669IIIIIIINRCS RunoffPR-A3a2.673IIIIIIIIINRCS RunoffPR-A4a2.873II</td>	Hydrograph TypeHydrograph NameHydrograph 1yr2-yr3-yr5-yr10-yr25-yr50-yrNRCS RunoffEX-A8.946II28.50IINRCS RunoffEX-B1.633II8.735IINRCS RunoffEX-C3.384II8.570IINRCS RunoffPR-A11.950II6.451IIPond RouteBio-Retention0.050IIIIIPond RoutePre-A21.229II4.937IIINRCS RunoffPR-A3a2.669IIIIIIINRCS RunoffPR-A3a2.673IIIIIIIIINRCS RunoffPR-A4a2.873II

<u>APPENDIX 7</u> <u>1-year design storm</u>

<u>HYDROGRAPHS</u>

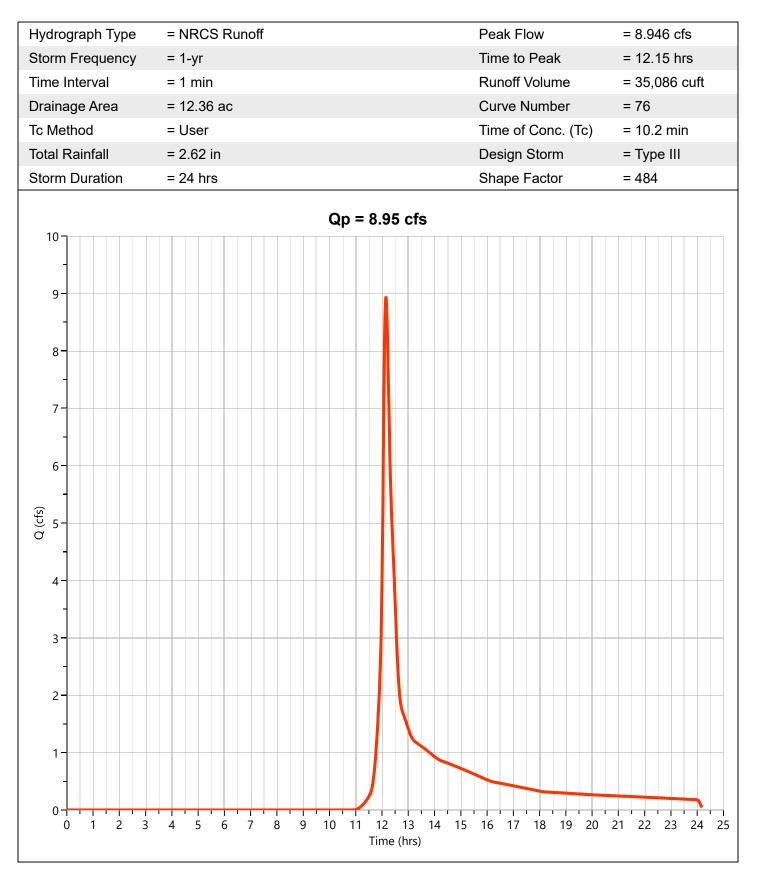
This page is left intentionally blank

Hydrograph 1-yr Summary

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

Hydrology Studio v 3.0.0.24

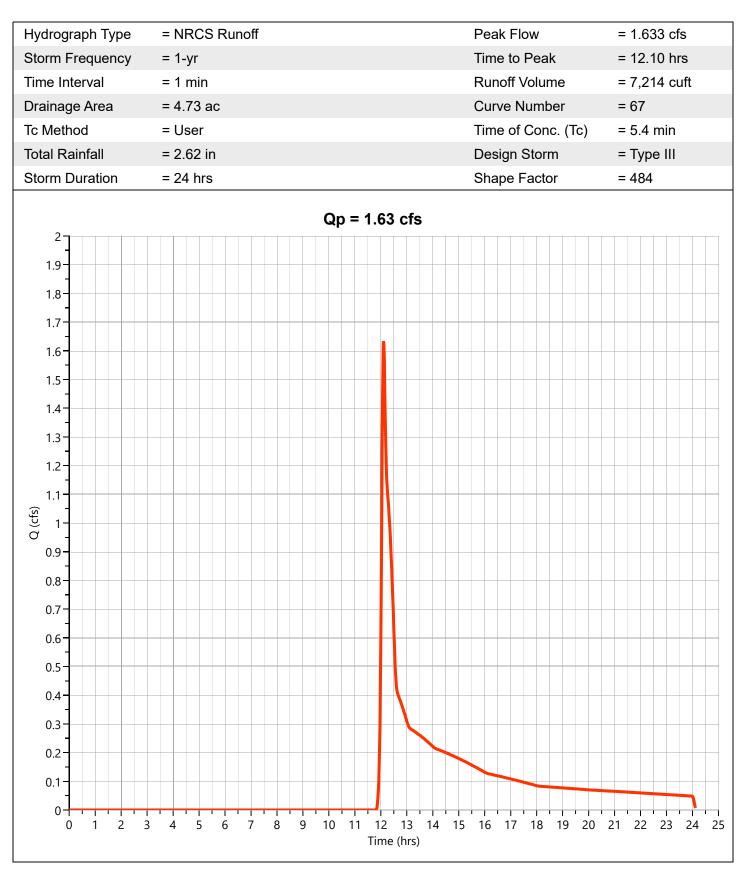

	Name	Flow (cfs)	Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Elevation (ft)	Maximum Storage (cuft)
NRCS Runoff	EX-A	8.946	12.15	35,086			
NRCS Runoff	EX-B	1.633	12.10	7,214			
NRCS Runoff	EX-C	3.384	12.12	11,702			
NRCS Runoff	PR-A1	1.950	12.08	6,565			
Pond Route	Bio-Retention	0.050	20.20	793	4	383.00	15,987
NRCS Runoff	PR-A2	1.229	12.05	4,022			
Pond Route	Pocket Pond	0.044	17.78	2,860	6	383.41	25,494
NRCS Runoff	PR-A3a	2.669	12.18	11,406			
NRCS Runoff	PR-A3b	0.129	12.22	870			
NRCS Runoff	PR-A4a	2.873	12.25	13,101			
NRCS Runoff	PR-A4b	2.277	12.17	9,013			
NRCS Runoff	PR-B	1.190	12.10	4,957			
NRCS Runoff	PR-C	2.216	12.12	7,663			
Junction	Design Point A	7.836	12.20	38,045	5, 7, 8, 9, 10, 11		
	NRCS Runoff NRCS Runoff Pond Route NRCS Runoff NRCS Runoff NRCS Runoff NRCS Runoff NRCS Runoff NRCS Runoff	NRCS RunoffEX-CNRCS RunoffPR-A1Pond RouteBio-RetentionNRCS RunoffPR-A2Pond RoutePocket PondNRCS RunoffPR-A3aNRCS RunoffPR-A4aNRCS RunoffPR-A4aNRCS RunoffPR-A4bNRCS RunoffPR-A4bNRCS RunoffPR-BNRCS RunoffPR-BNRCS RunoffPR-Ab	NRCS RunoffEX-C3.384NRCS RunoffPR-A11.950Pond RouteBio-Retention0.050NRCS RunoffPR-A21.229Pond RoutePocket Pond0.044NRCS RunoffPR-A3a2.669NRCS RunoffPR-A4a2.873NRCS RunoffPR-A4a2.277NRCS RunoffPR-A4b1.190NRCS RunoffPR-B1.190NRCS RunoffPR-C2.216	NRCS RunoffEX-C3.38412.12NRCS RunoffPR-A11.95012.08Pond RouteBio-Retention0.05020.20NRCS RunoffPR-A21.22912.05Pond RoutePocket Pond0.04417.78NRCS RunoffPR-A3a2.66912.18NRCS RunoffPR-A4a2.87312.22NRCS RunoffPR-A4a2.87312.25NRCS RunoffPR-A4b2.27712.17NRCS RunoffPR-B1.19012.10NRCS RunoffPR-B1.19012.10	NRCS Runoff EX-C 3.384 12.12 11,702 NRCS Runoff PR-A1 1.950 12.08 6,565 Pond Route Bio-Retention 0.050 20.20 793 NRCS Runoff PR-A2 1.229 12.05 4,022 Pond Route Pocket Pond 0.044 17.78 2,860 NRCS Runoff PR-A3a 2.669 12.18 11,406 NRCS Runoff PR-A3a 0.129 12.22 870 NRCS Runoff PR-A4a 2.873 12.25 13,101 NRCS Runoff PR-A4b 2.277 12.17 9,013 NRCS Runoff PR-B 1.190 12.10 4,957 NRCS Runoff PR-A4b 2.216 12.12 7,663	NRCS Runoff EX-C 3.384 12.12 11,702 NRCS Runoff PR-A1 1.950 12.08 6,565 Pond Route Bio-Retention 0.050 20.20 793 4 NRCS Runoff PR-A2 1.229 12.05 4,022 Pond Route Pocket Pond 0.044 17.78 2,860 6 NRCS Runoff PR-A3a 2.669 12.18 11,406 NRCS Runoff PR-A3a 2.873 12.25 870.00 NRCS Runoff PR-A4b 2.277 12.17 9,013 NRCS Runoff PR-A4b 2.216 12.12 7,663	NRCS RunoffEX-C3.38412.1211,702IINRCS RunoffPR-A11.95012.086,565I1000Pond RouteBio-Retention0.05020.207934383.00NRCS RunoffPR-A21.22912.054,022I383.41Pond RoutePocket Pond0.04417.782,8606383.41NRCS RunoffPR-A3a2.66912.1811,406I12.12NRCS RunoffPR-A4a2.87312.22870IINRCS RunoffPR-A4a2.27712.179,013IINRCS RunoffPR-B1.19012.104,957IINRCS RunoffPR-B2.21612.127,663II

Hydrology Studio v 3.0.0.24

EX-A

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

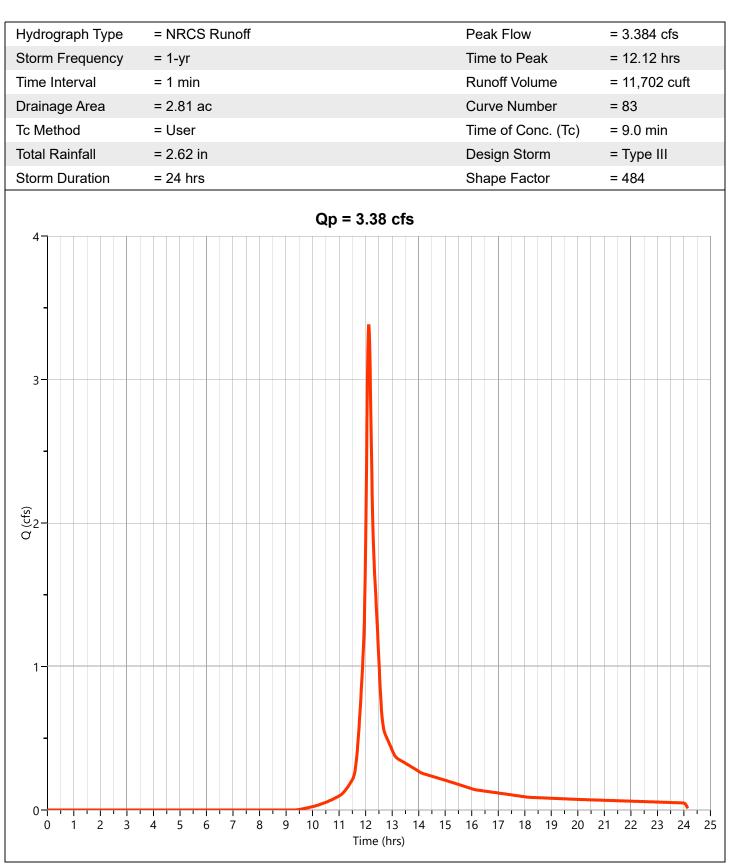


Hydrology Studio v 3.0.0.24

EX-B

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

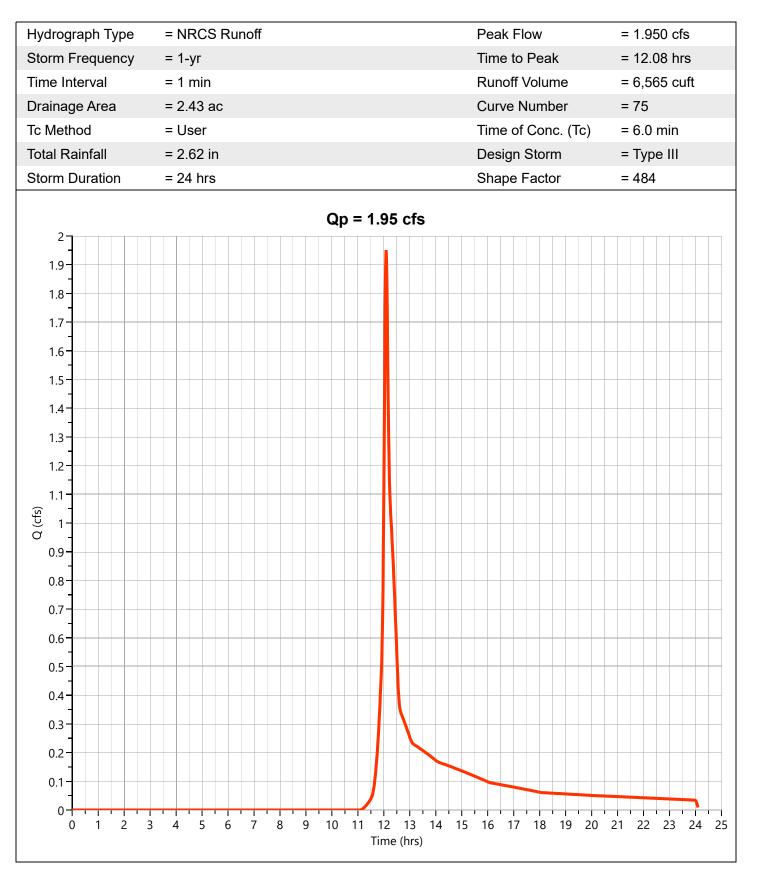


Hydrology Studio v 3.0.0.24

EX-C

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

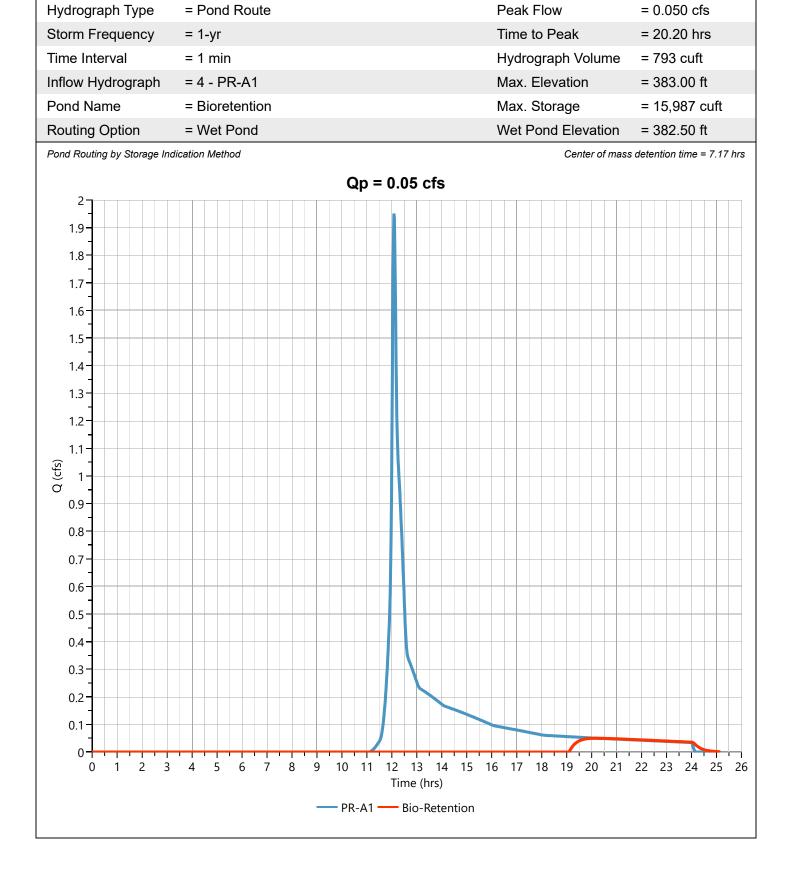


Hydrology Studio v 3.0.0.24

PR-A1

Project Name: Regional Food Bank - Hudson Valley

07-17-2024



Hydrology Studio v 3.0.0.24

Bio-Retention

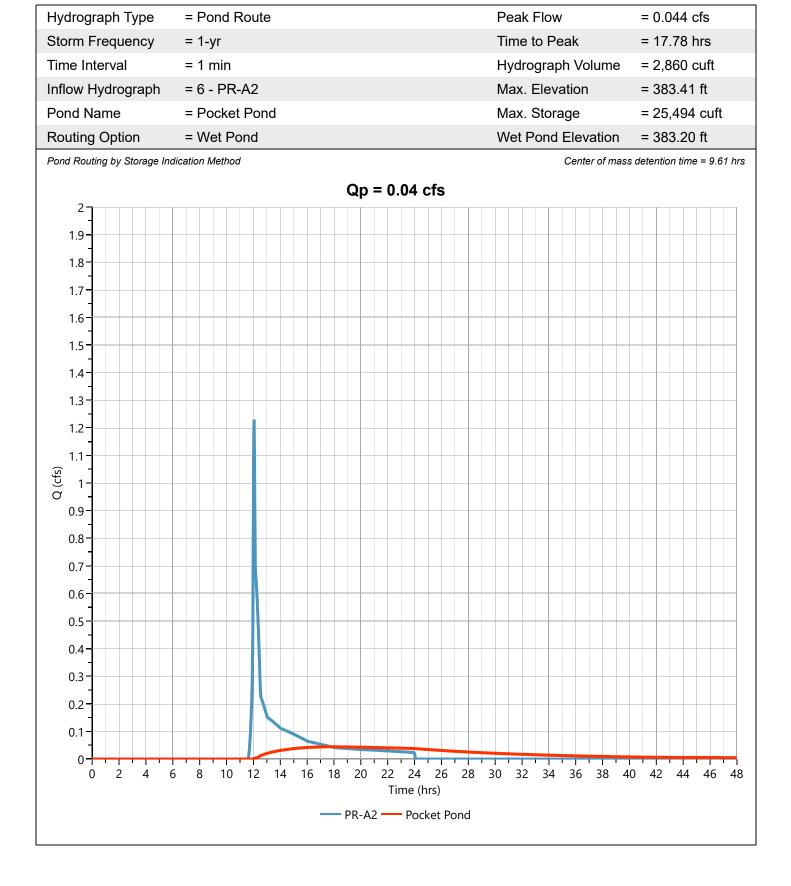
Project Name: Regional Food Bank - Hudson Valley

07-17-2024

Hydrology Studio v 3.0.0.24

PR-A2

Project Name: Regional Food Bank - Hudson Valley

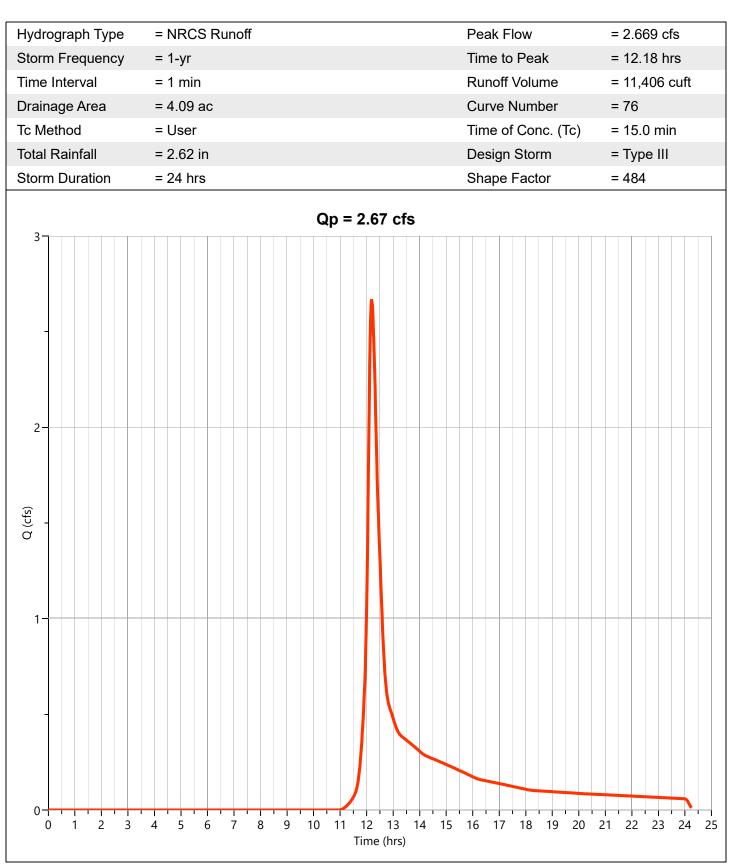

07-17-2024

Hydrograph Type	= NRCS Runoff	Peak Flow	= 1.229 cfs
Storm Frequency	= 1-yr	Time to Peak	= 12.05 hrs
Time Interval	= 1 min	Runoff Volume	= 4,022 cuft
Drainage Area	= 2.14 ac	Curve Number	= 71
Tc Method	= User	Time of Conc. (Tc)	= 1.8 min
Total Rainfall	= 2.62 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484
	Qp = 1.23 cfs		
2			
1.9			
- 1.8			
1.7			
-			
1.6-			
1.5			
1.4			
1.3-			
1.2			
-			
α α α α α α α α α α α α α α			
0.9-			
0.8			
0.7			
0.6			
0.5			
- 0.4 -			
0.3			
-			
0.2			
0.1			
0 1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 Time (hrs)	16 17 18 19 20	21 22 23 24 25

Hydrology Studio v 3.0.0.24

Pocket Pond

07-17-2024

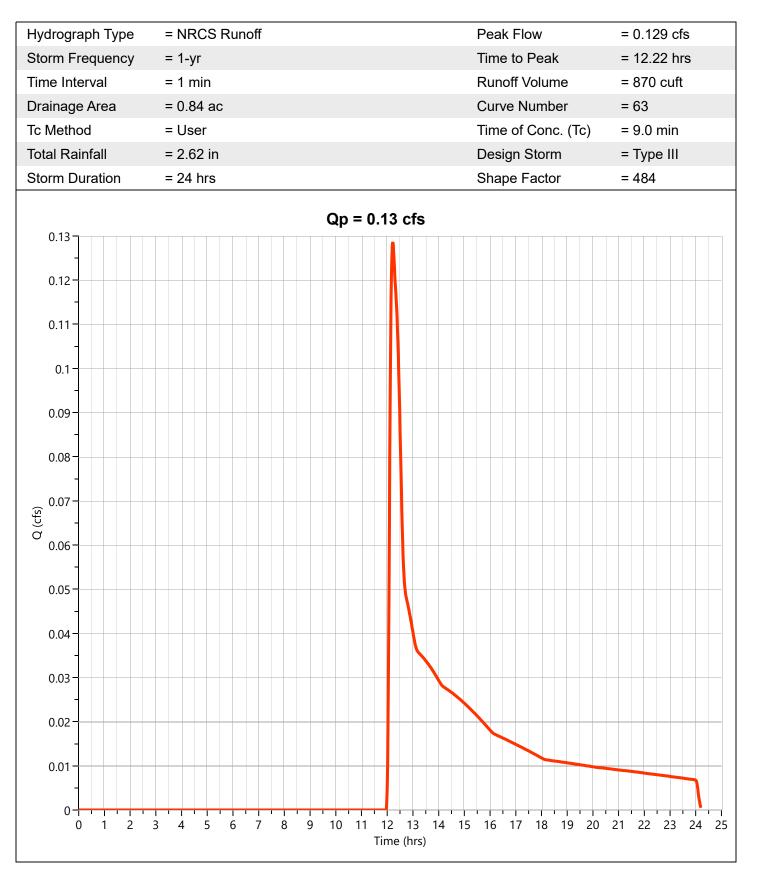


Hydrology Studio v 3.0.0.24

PR-A3a

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

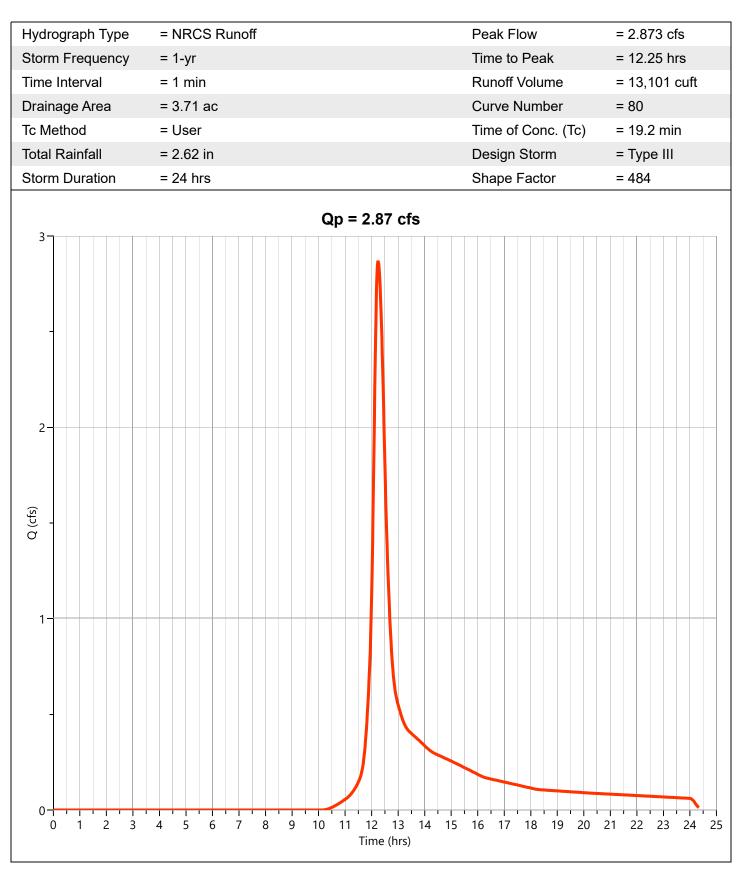


Hydrology Studio v 3.0.0.24

PR-A3b

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

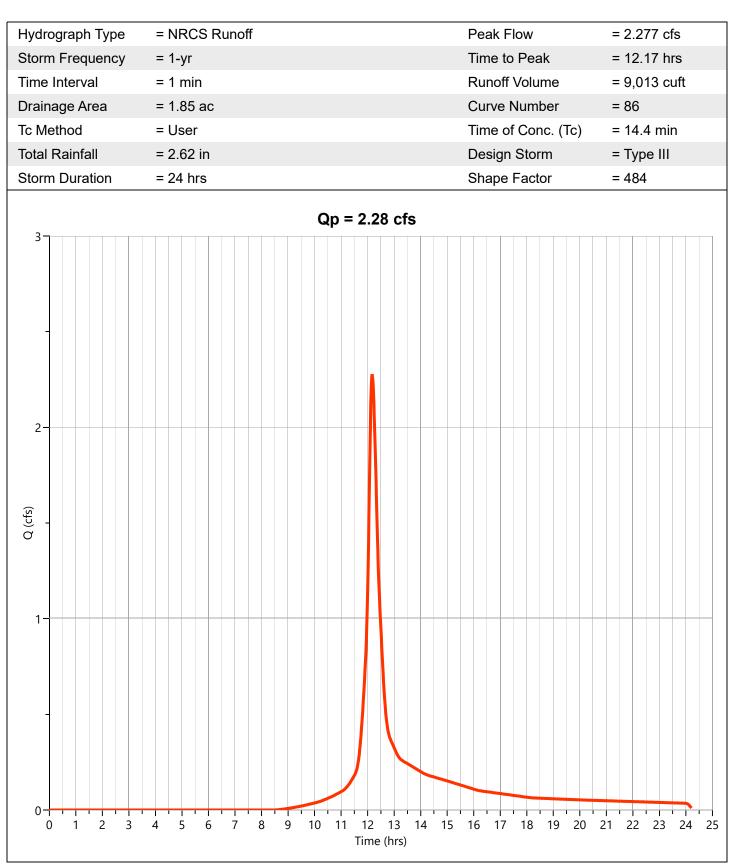


Hydrology Studio v 3.0.0.24

PR-A4a

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

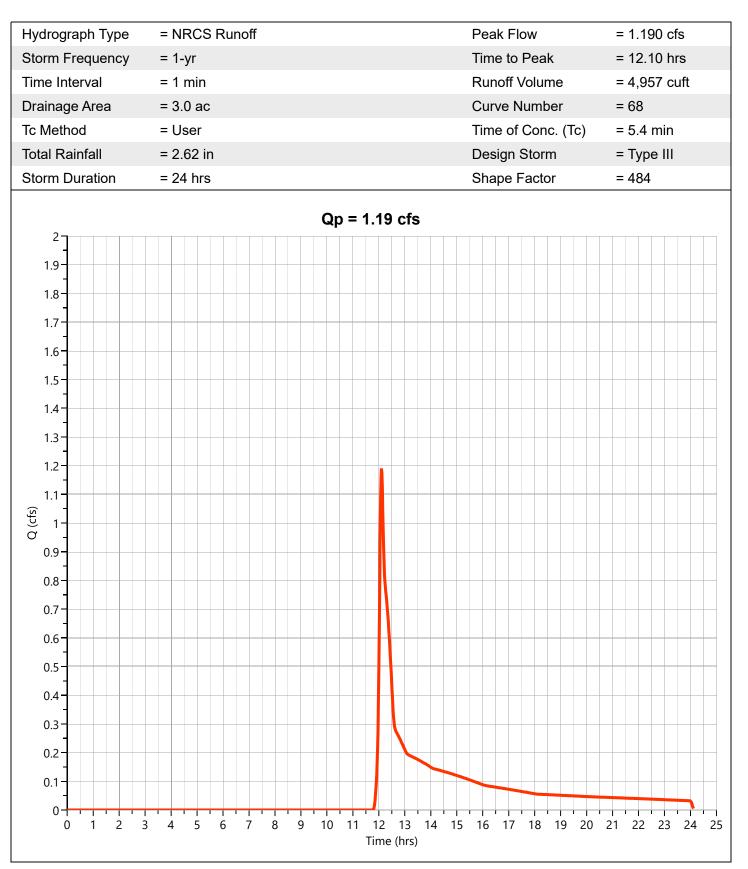


Hydrology Studio v 3.0.0.24

PR-A4b

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

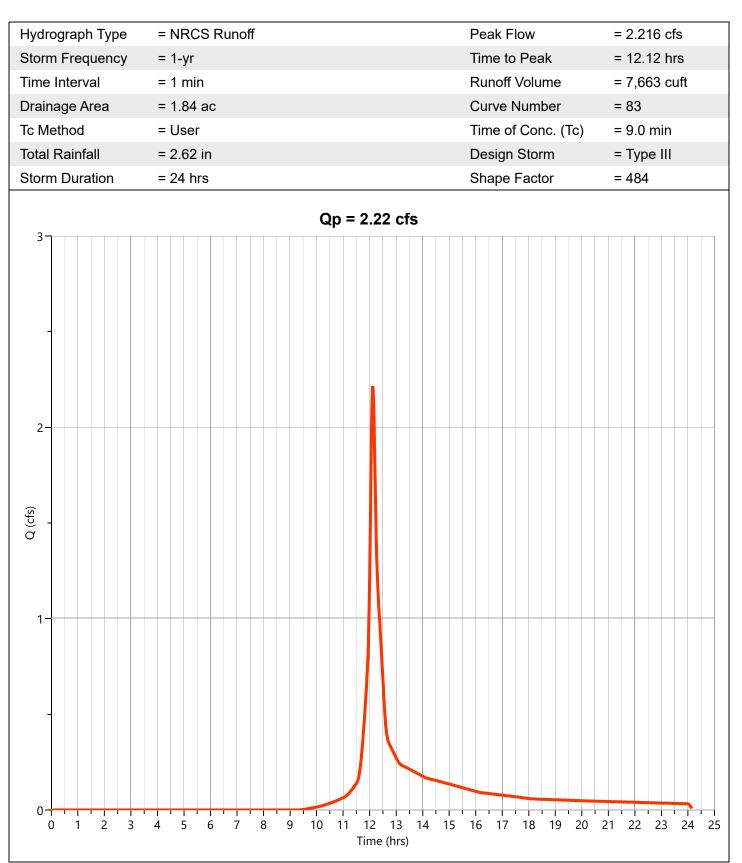


Hydrology Studio v 3.0.0.24

PR-B

Project Name: Regional Food Bank - Hudson Valley

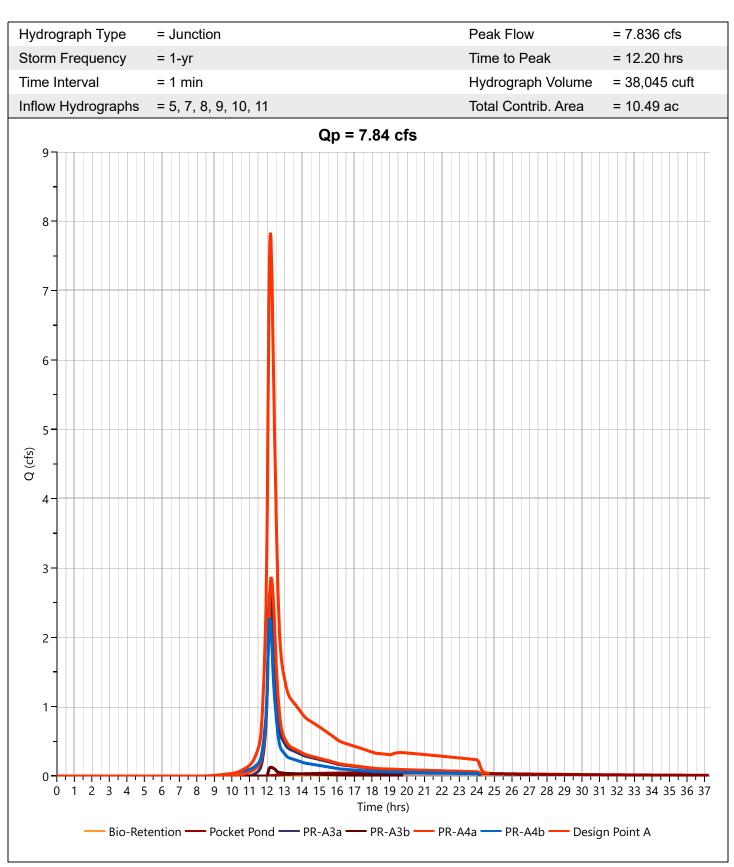
07-17-2024



Hydrology Studio v 3.0.0.24

PR-C

Project Name: Regional Food Bank - Hudson Valley


07-17-2024

Hydrology Studio v 3.0.0.24

Design Point A

07-17-2024

This page is left intentionally blank

<u>APPENDIX 8</u> <u>10-year design storm</u>

<u>HYDROGRAPHS</u>

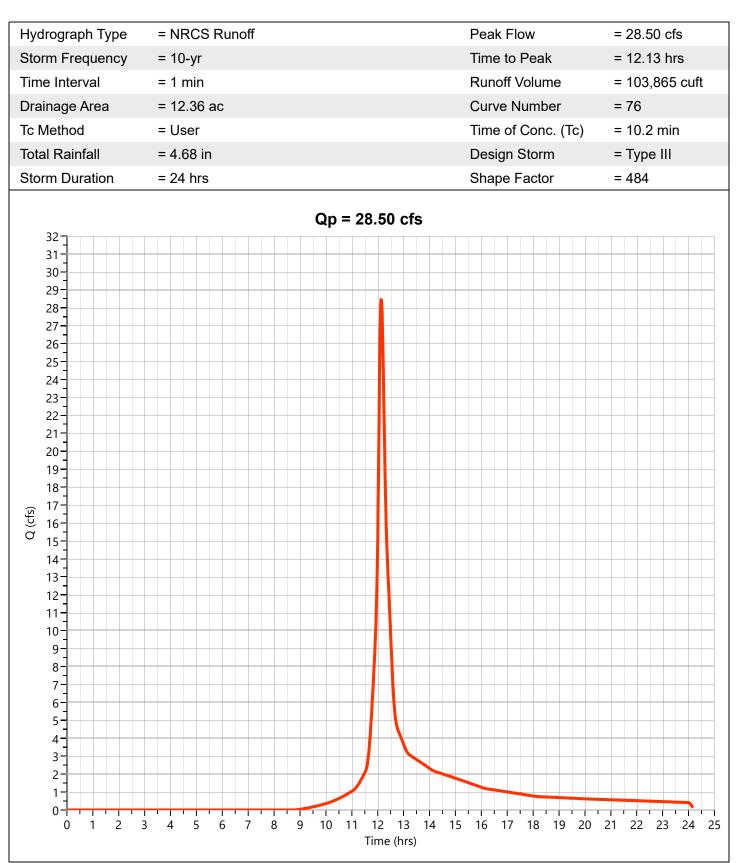
This page is left intentionally blank

Hydrograph 10-yr Summary

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

Hydrology Studio v 3.0.0.24

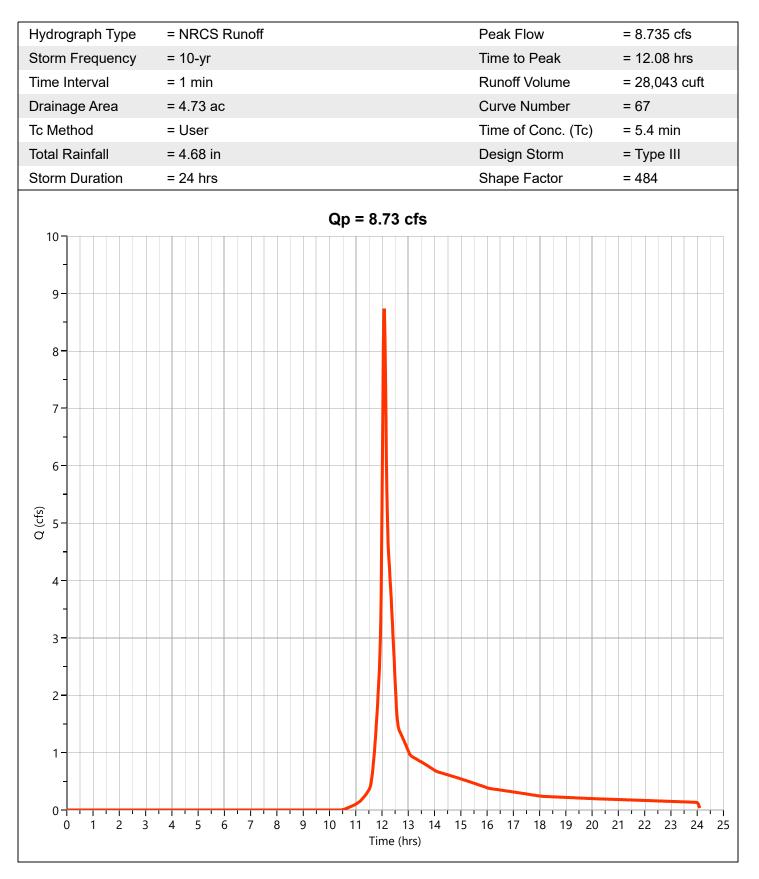

2 N 3 N 4 N 5 P 6 N 7 P 8 N	NRCS Runoff NRCS Runoff NRCS Runoff NRCS Runoff Pond Route NRCS Runoff	EX-A EX-B EX-C PR-A1	28.50 8.735 8.570	12.13 12.08	103,865 28,043			
3 N 4 N 5 P 6 N 7 P	NRCS Runoff NRCS Runoff Pond Route	EX-C			28,043			
4 N 5 F 6 N 7 F 8 N	NRCS Runoff Pond Route		8.570	40.40				
5 P 6 N 7 P 8 N	Pond Route	PR-A1		12.12	29,439			
6 N 7 P 8 N			6.451	12.08	19,943			
7 P 8 N		Bio-Retention	2.267	12.38	14,171	4	383.14	17,927
8 N	INRUS RUIIOII	PR-A2	4.937	12.03	13,675			
	Pond Route	Pocket Pond	0.169	16.10	12,115	6	383.89	31,513
	NRCS Runoff	PR-A3a	8.506	12.17	33,767			
9 N	NRCS Runoff	PR-A3b	1.068	12.13	3,995			
10 N	NRCS Runoff	PR-A4a	7.985	12.23	35,225			
11 N	NRCS Runoff	PR-A4b	5.338	12.17	21,285			
12 N	NRCS Runoff	PR-B	5.834	12.08	18,590			
13 N	NRCS Runoff	PR-C	5.612	12.12	19,277			
14 J	Junction	Design Point A	23.85	12.20	120,559	5, 7, 8, 9, 10, 11		

Hydrology Studio v 3.0.0.24

EX-A

Project Name: Regional Food Bank - Hudson Valley

07-17-2024



Hydrology Studio v 3.0.0.24

EX-B

Project Name: Regional Food Bank - Hudson Valley

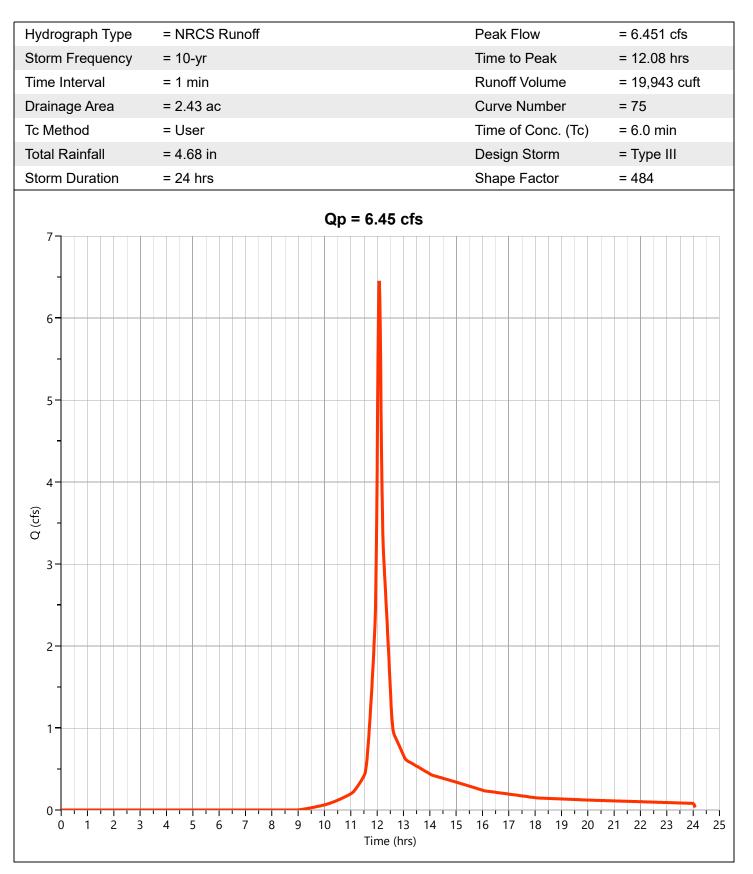
07-17-2024

Hydrology Studio v 3.0.0.24

EX-C

Project Name: Regional Food Bank - Hudson Valley

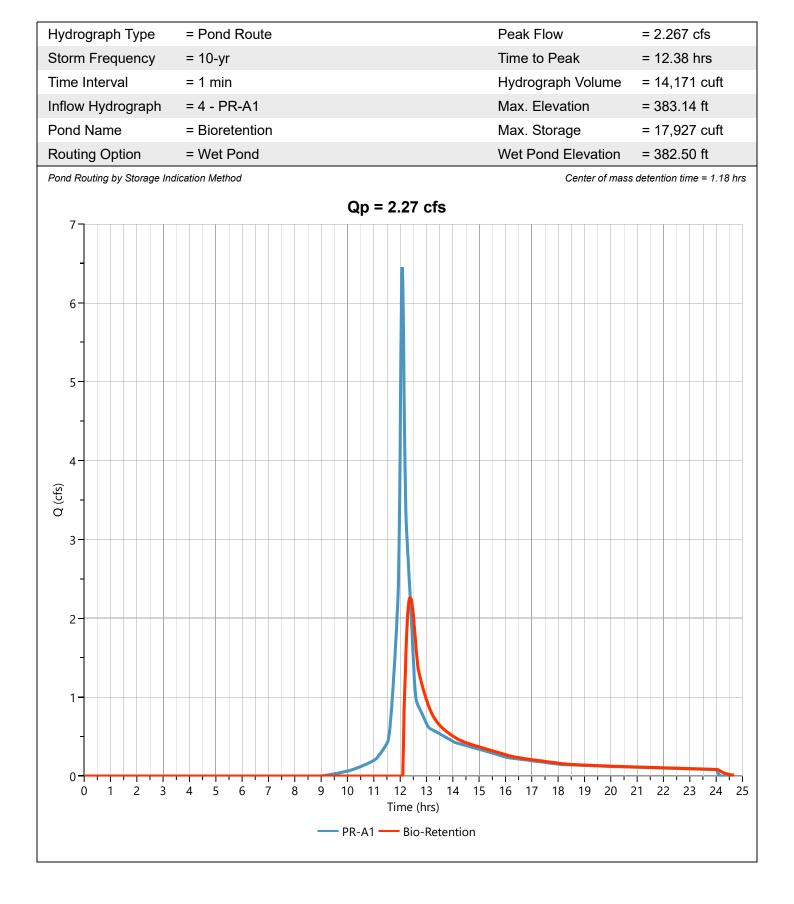
07-17-2024


Hydrograph Type	= NRCS Runoff	Peak Flow	= 8.570 cfs
Storm Frequency	= 10-yr	Time to Peak	= 12.12 hrs
Time Interval	= 1 min	Runoff Volume	= 29,439 cuft
Drainage Area	= 2.81 ac	Curve Number	= 83
Tc Method	= User	Time of Conc. (Tc)	= 9.0 min
Total Rainfall	= 4.68 in	Design Storm	= Type III
Storm Duration	= 24 hrs	Shape Factor	= 484
	Qp = 8.57 cfs		
9-			
_			
8-			
7-			
6			
- 5-			
Q (cfs)			
4-			
3			
2			
1			
0 1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 Time (hrs)	16 17 18 19 20	21 22 23 24 25

Hydrology Studio v 3.0.0.24

PR-A1

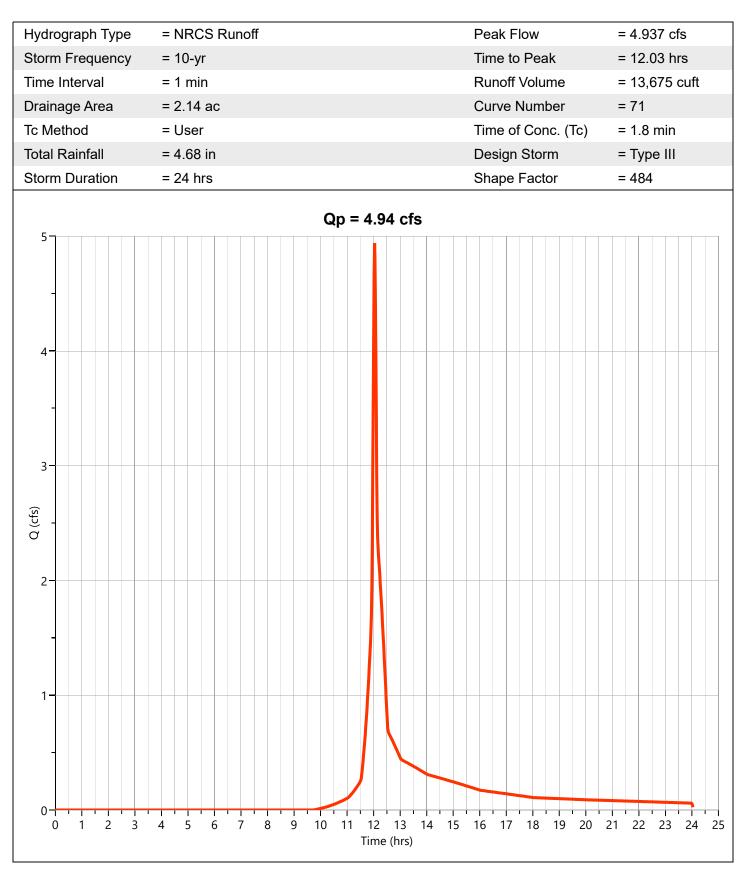
Project Name: Regional Food Bank - Hudson Valley


07-17-2024

Hydrology Studio v 3.0.0.24

Bio-Retention

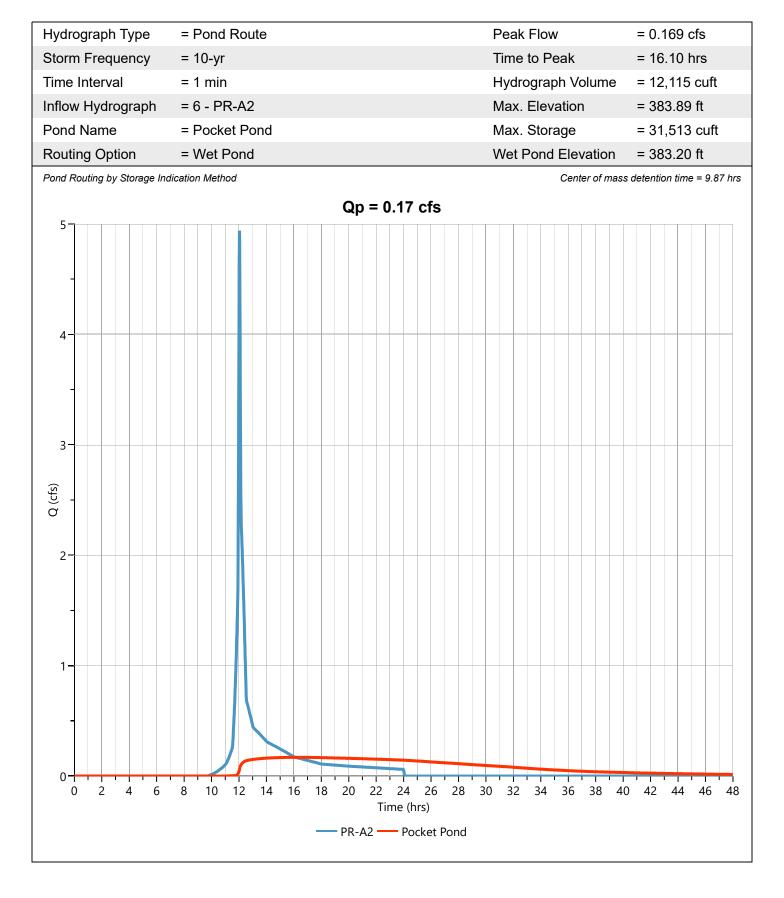
07-17-2024



Hydrology Studio v 3.0.0.24

PR-A2

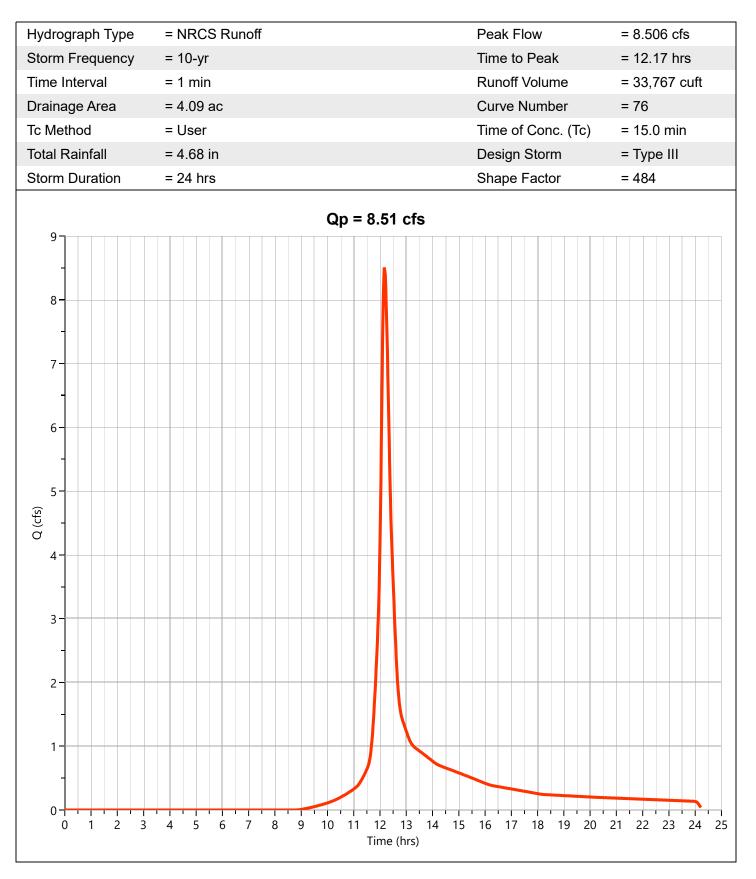
Project Name: Regional Food Bank - Hudson Valley


07-17-2024

Hydrology Studio v 3.0.0.24

Pocket Pond

07-17-2024

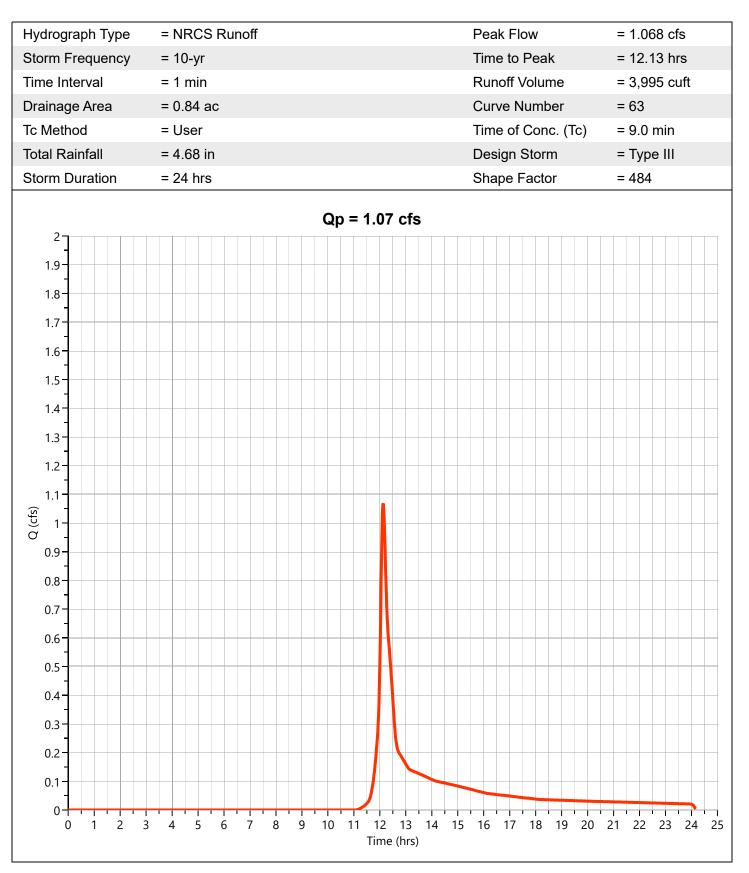


Hydrology Studio v 3.0.0.24

PR-A3a

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

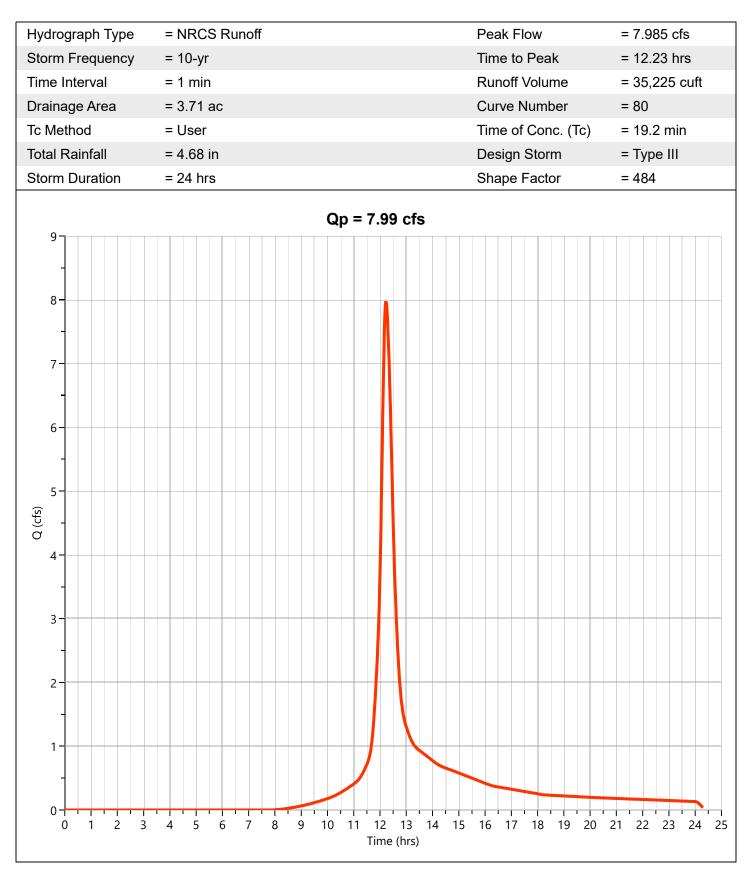


Hydrology Studio v 3.0.0.24

PR-A3b

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

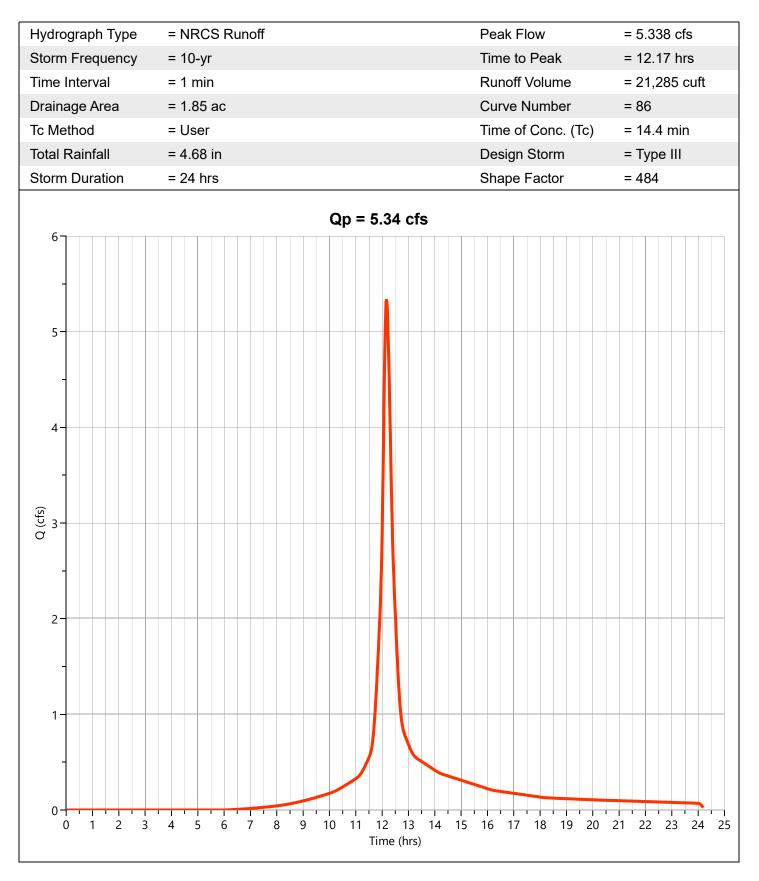


Hydrology Studio v 3.0.0.24

PR-A4a

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

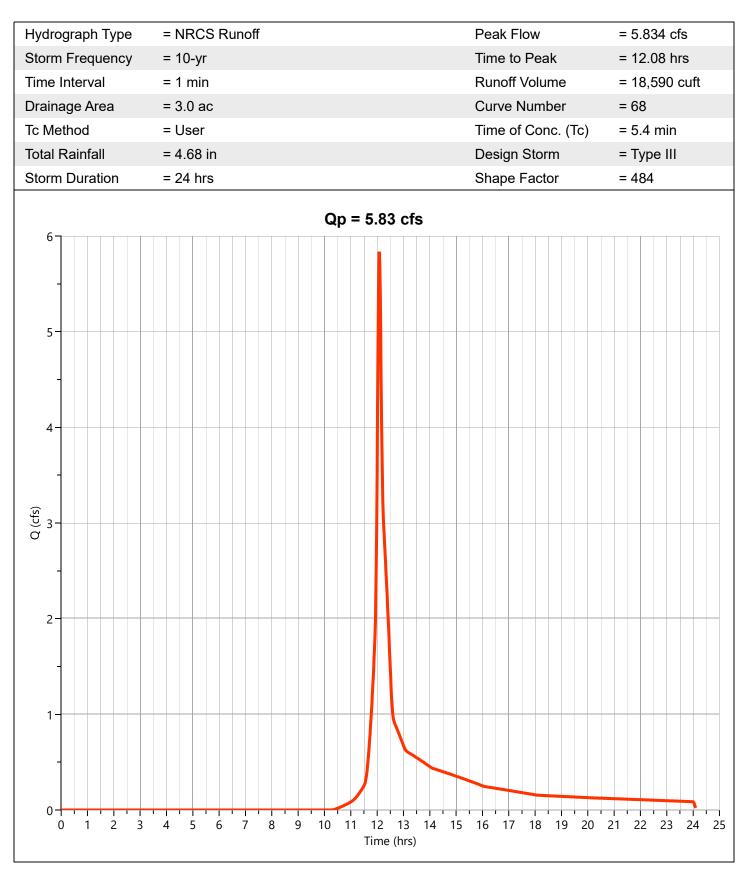


Hydrology Studio v 3.0.0.24

PR-A4b

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

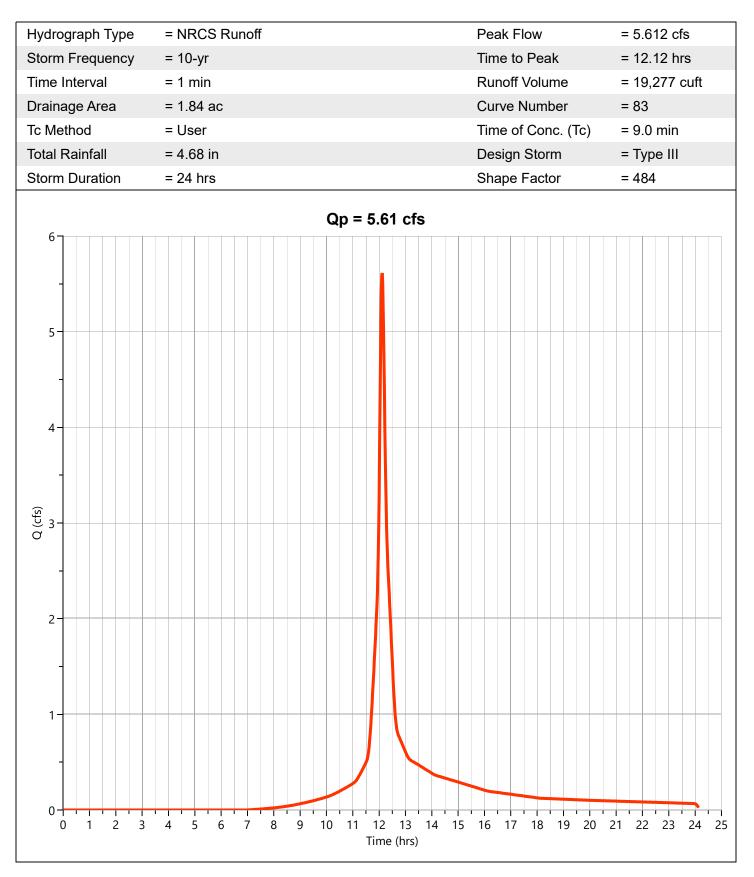


Hydrology Studio v 3.0.0.24

PR-B

Project Name: Regional Food Bank - Hudson Valley

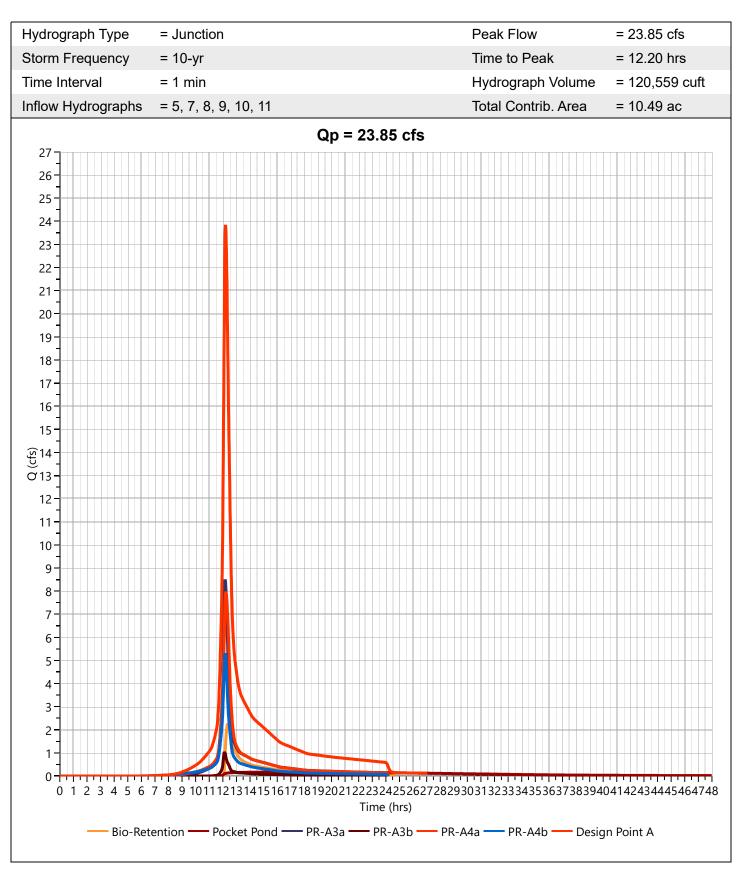
07-17-2024



Hydrology Studio v 3.0.0.24

PR-C

Project Name: Regional Food Bank - Hudson Valley


07-17-2024

Hydrology Studio v 3.0.0.24

Design Point A

07-17-2024

This page is left intentionally blank

APPENDIX 9

100-YEAR DESIGN STORM

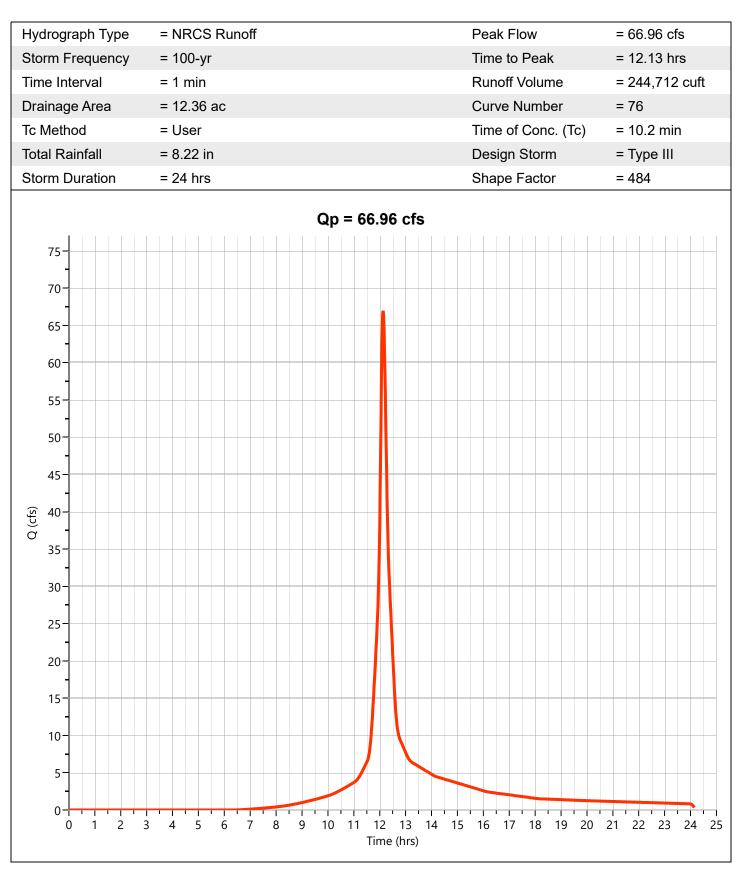
HYDROGRAPHS

This page is left intentionally blank

Hydrograph 100-yr Summary Hydrology Studio v 3.0.0.24

Project Name: Regional Food Bank - Hudson Valley

07-17-2024


Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	EX-A	66.96	12.13	244,712			
2	NRCS Runoff	EX-B	24.74	12.08	76,218			
3	NRCS Runoff	EX-C	17.87	12.12	63,116			
4	NRCS Runoff	PR-A1	15.36	12.08	47,672			
5	Pond Route	Bio-Retention	9.048	12.18	41,900	4	383.51	23,384
6	NRCS Runoff	PR-A2	12.78	12.03	34,745			
7	Pond Route	Pocket Pond	4.605	12.25	32,876	6	384.22	36,362
8	NRCS Runoff	PR-A3a	20.03	12.17	79,556			
9	NRCS Runoff	PR-A3b	3.405	12.12	11,716			
10	NRCS Runoff	PR-A4a	17.56	12.22	78,535			
11	NRCS Runoff	PR-A4b	10.68	12.17	43,952			
12	NRCS Runoff	PR-B	16.12	12.08	49,646			
13	NRCS Runoff	PR-C	11.70	12.12	41,329			
14	Junction	Design Point A	64.03	12.18	288,536	5, 7, 8, 9, 10, 11		

Hydrology Studio v 3.0.0.24

EX-A

Project Name: Regional Food Bank - Hudson Valley

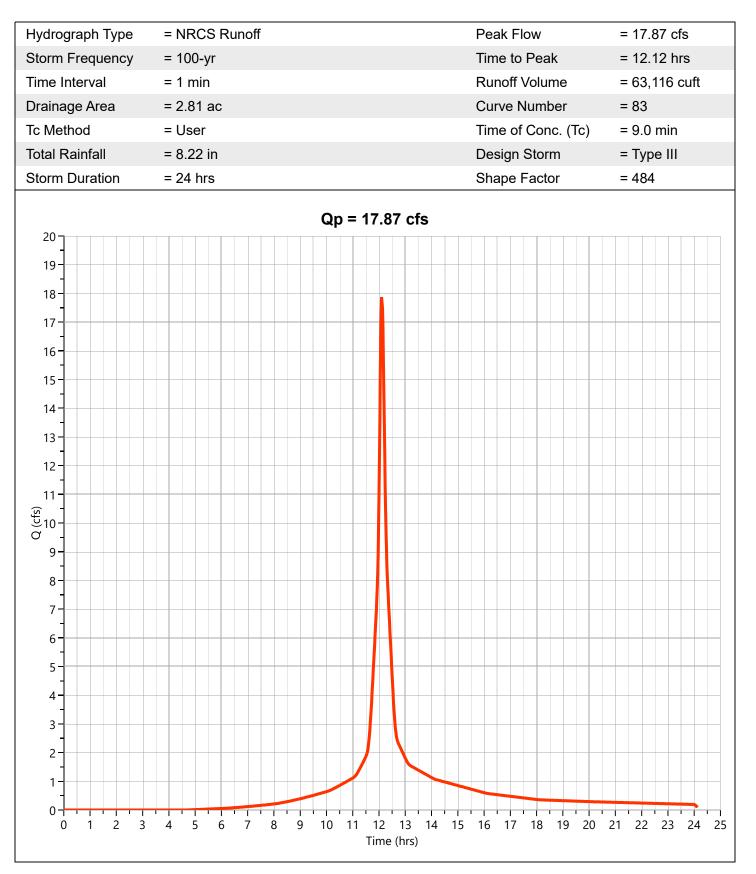
07-17-2024

Hydrology Studio v 3.0.0.24

EX-B

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

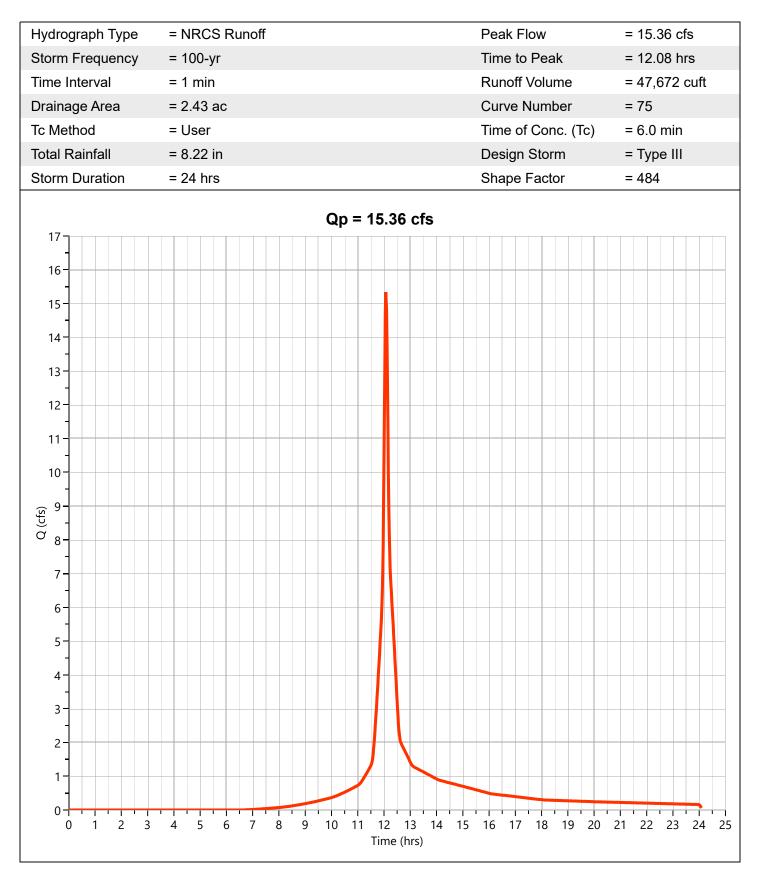

Hydrograph Type	= NRCS Runoff	Peak Flow	= 24.74 cfs					
Storm Frequency	= 100-yr	Time to Peak	= 12.08 hrs					
Time Interval	= 1 min	Runoff Volume	= 76,218 cuft					
Drainage Area	= 4.73 ac	Curve Number	= 67					
Tc Method	= User	Time of Conc. (Tc)	= 5.4 min					
Total Rainfall	= 8.22 in	Design Storm	= Type III					
Storm Duration	= 24 hrs	Shape Factor	= 484					
	0n = 24.74 of n							
28-	Qp = 24.74 cfs							
26-								
24								
22-								
20-								
18-								
16								
(sj) 14 0								
12								
10-								
8								
6-								
4								
2-								
			21 22 23 24 25					
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Time (hrs)								

Hydrology Studio v 3.0.0.24

EX-C

Project Name: Regional Food Bank - Hudson Valley

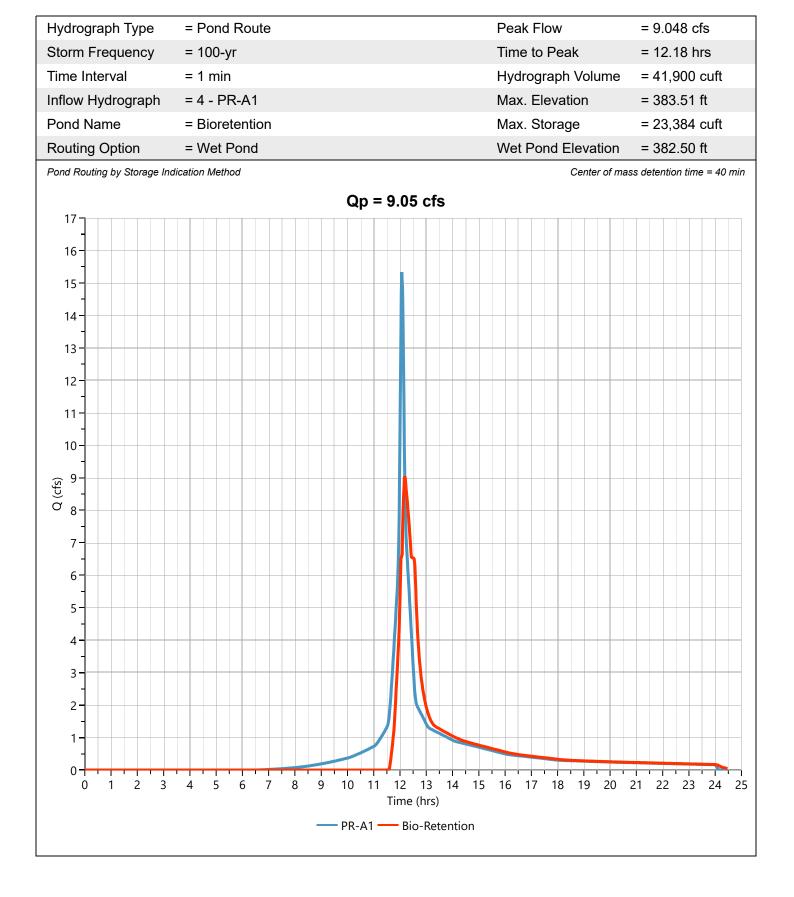
07-17-2024



Hydrology Studio v 3.0.0.24

PR-A1

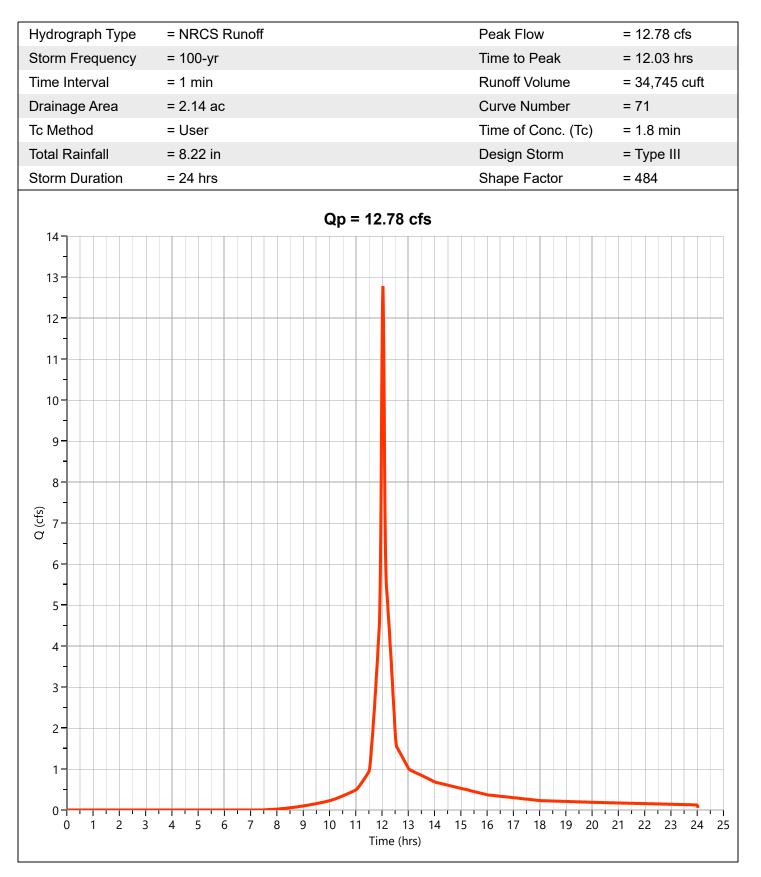
Project Name: Regional Food Bank - Hudson Valley


07-17-2024

Hydrology Studio v 3.0.0.24

Bio-Retention

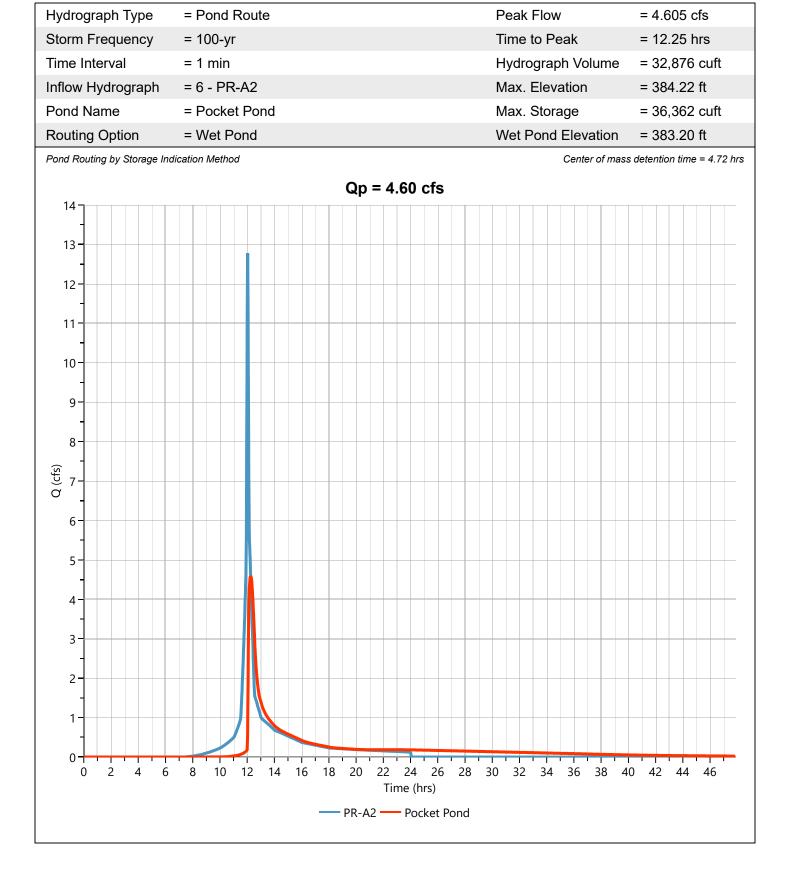
07-17-2024



Hydrology Studio v 3.0.0.24

PR-A2

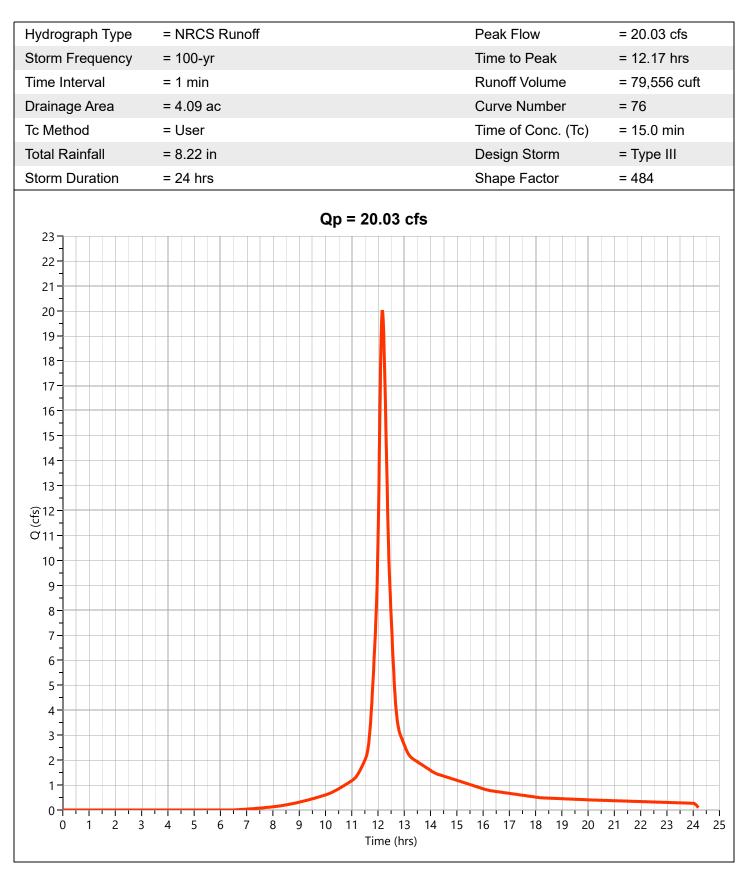
Project Name: Regional Food Bank - Hudson Valley


07-17-2024

Hydrology Studio v 3.0.0.24

Pocket Pond

07-17-2024

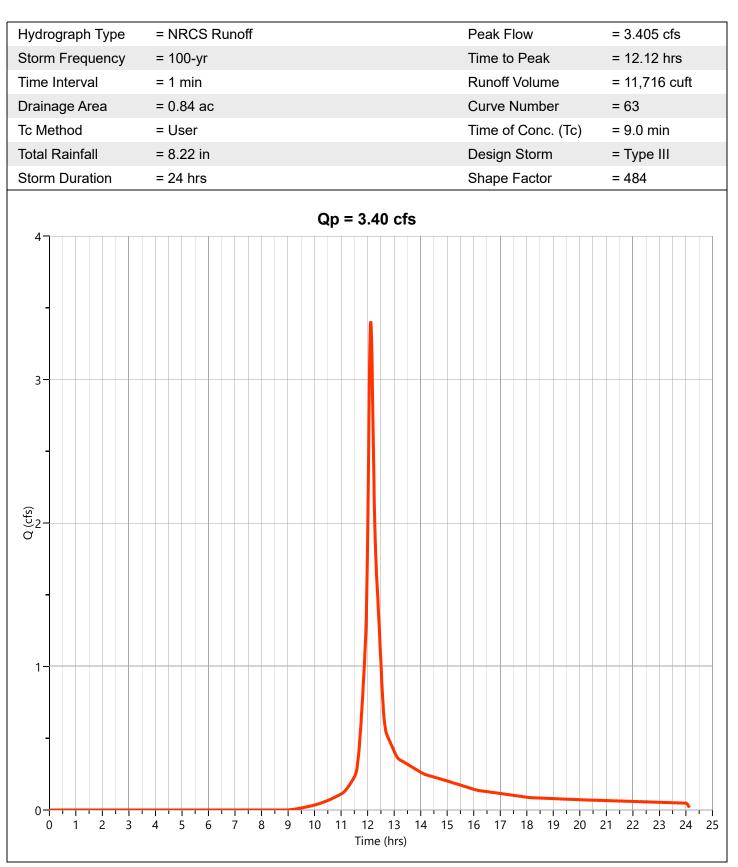


Hydrology Studio v 3.0.0.24

PR-A3a

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

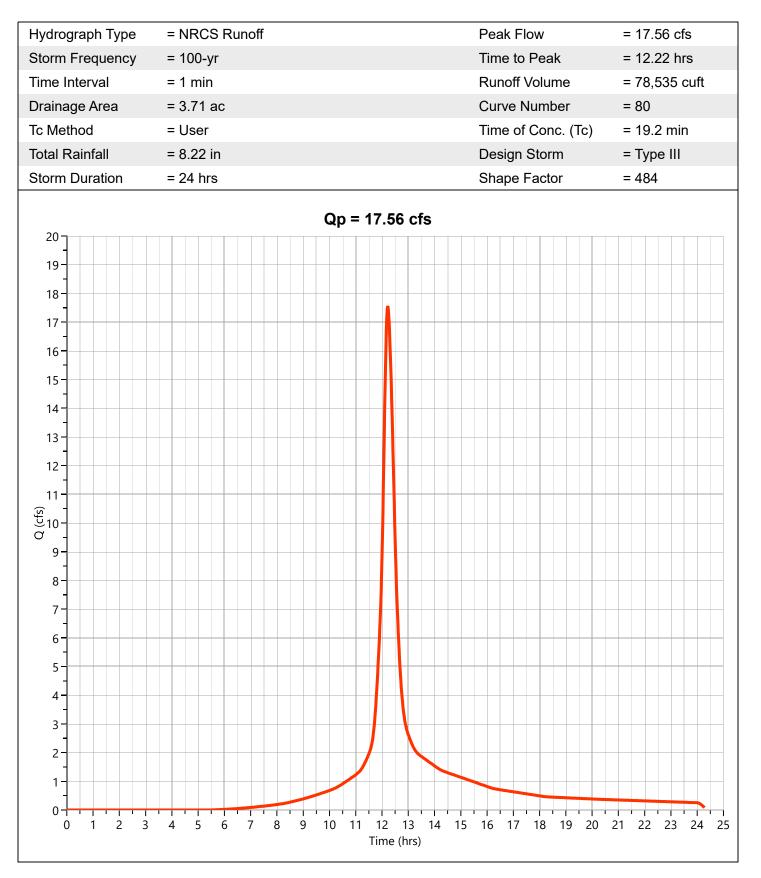


Hydrology Studio v 3.0.0.24

PR-A3b

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

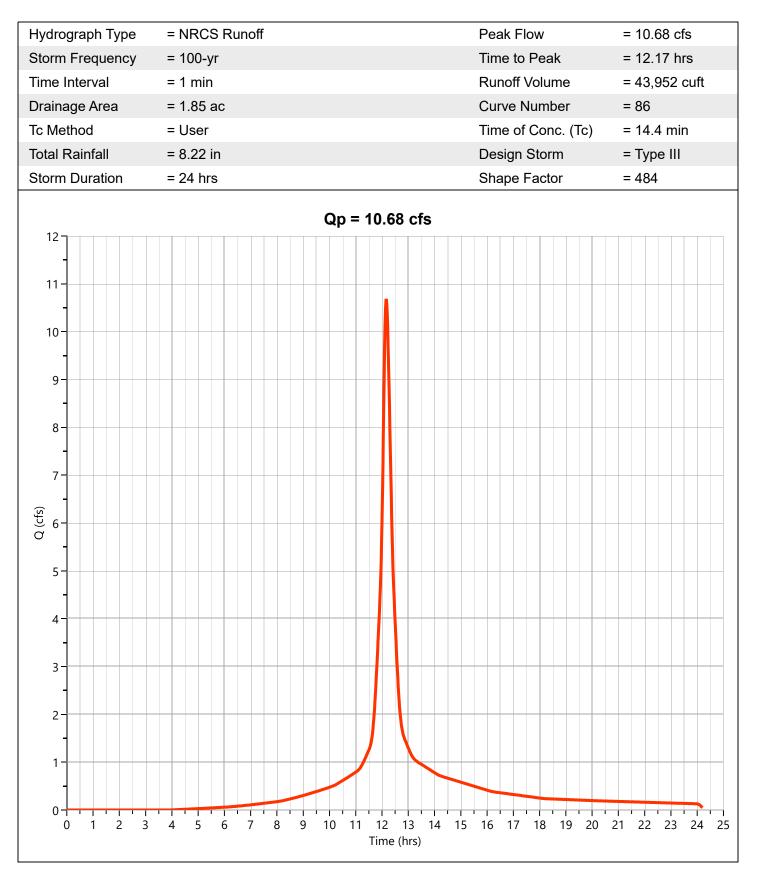


Hydrology Studio v 3.0.0.24

PR-A4a

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

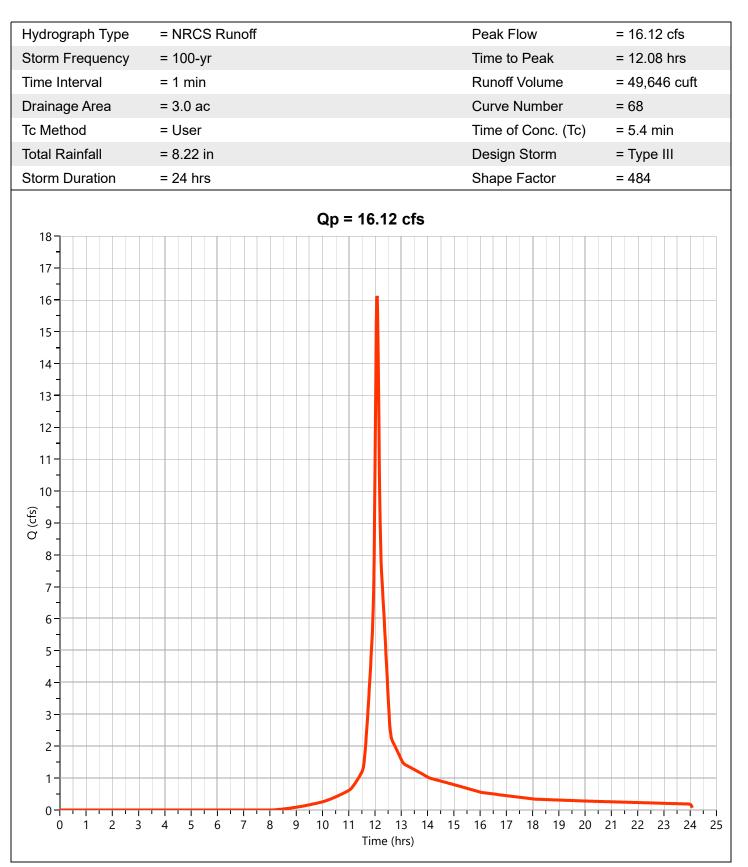


Hydrology Studio v 3.0.0.24

PR-A4b

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

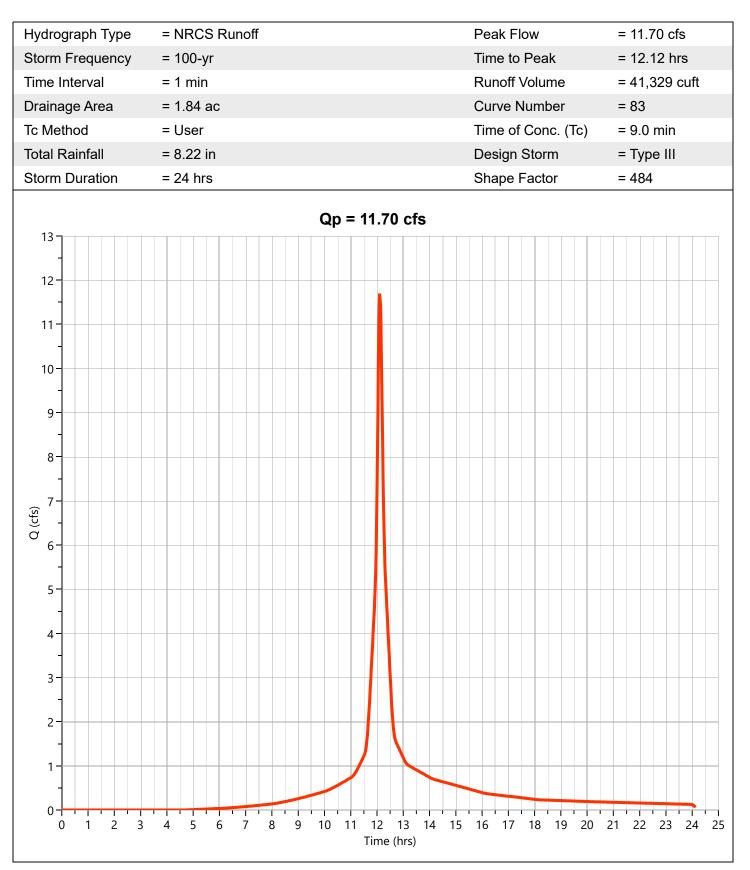


Hydrology Studio v 3.0.0.24

PR-B

Project Name: Regional Food Bank - Hudson Valley

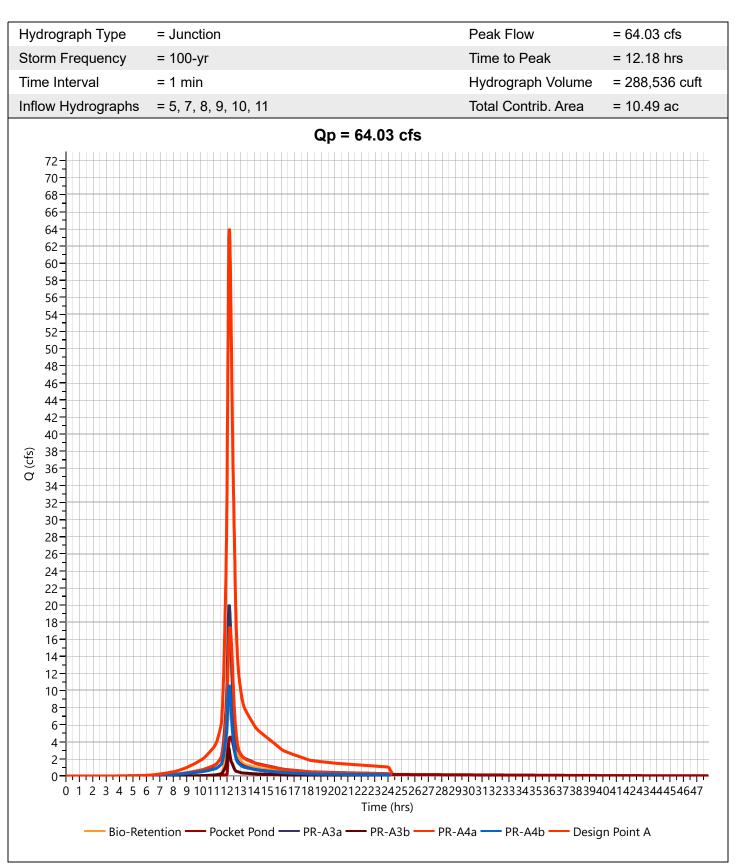
07-17-2024



Hydrology Studio v 3.0.0.24

PR-C

Project Name: Regional Food Bank - Hudson Valley

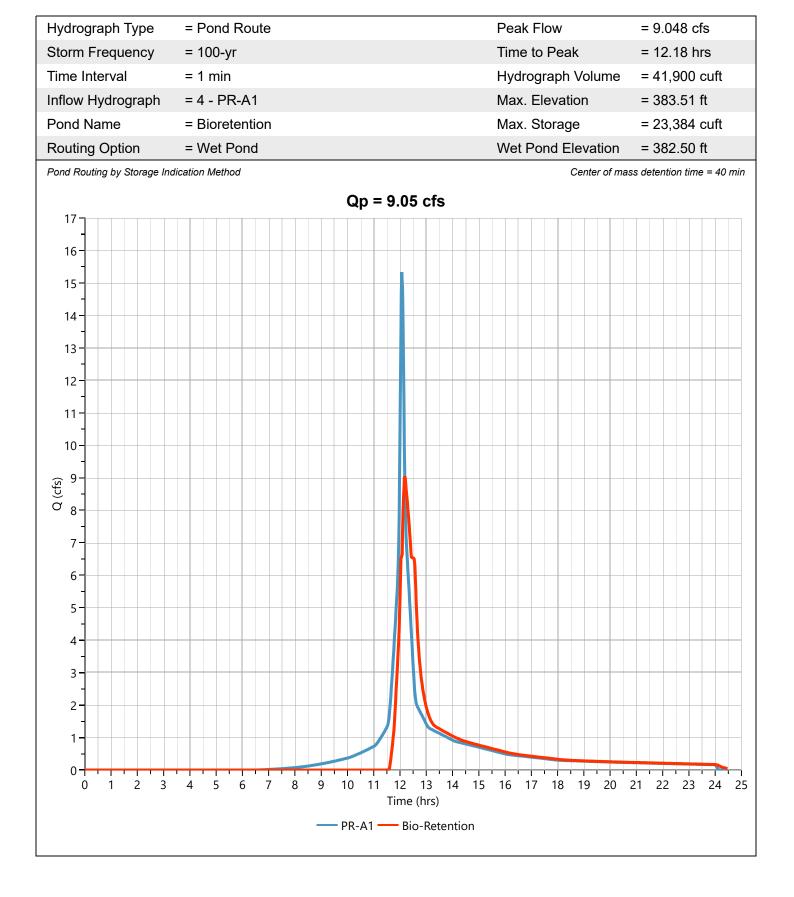

07-17-2024

Hydrology Studio v 3.0.0.24

Design Point A

07-17-2024

This page is left intentionally blank


<u>APPENDIX 10</u> <u>RESERVOIR REPORTS</u>

This page is left intentionally blank

Hydrology Studio v 3.0.0.24

Bio-Retention

07-17-2024

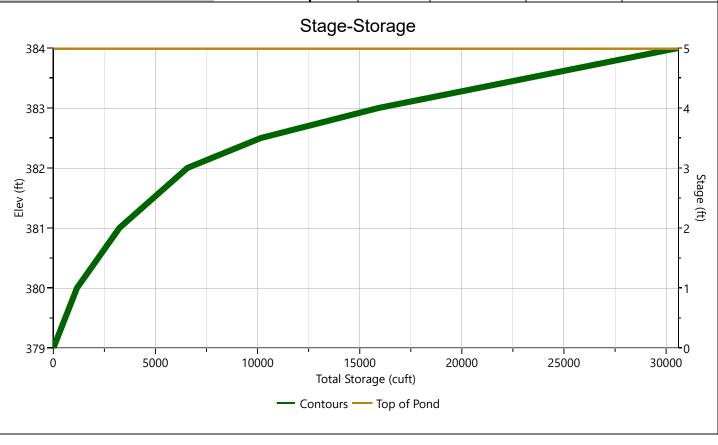
User Defined Contours

Bottom Elevation, ft

Description

Voids (%)

Volume Calc


Hydrology Studio v 3.0.0.24

Bioretention

07-17-2024

Stage-Storage

Stage / Storage Table Input Stage Elevation **Contour Area** Incr. Storage **Total Storage** (ft) (sqft) (cuft) (cuft) (ft) 379.00 0.00 379.00 819 0.000 0.000 100.00 380.00 1,505 1,162 1,162 1.00 2.00 381.00 2,640 2,073 3,235 None 3.00 382.00 4,019 3,330 6,564 382.50 10,377 3.50 3,599 10,163 4.00 383.00 12,706 5,771 15,934 5.00 384.00 16,638 14,672 30,606 Stage-Storage

Hydrology Studio v 3.0.0.24

Bioretention

07-17-2024

Stage-Discharge

Outwart / Orificas	Cubert		Orifices		Orifice Dista			
Culvert / Orifices	Culvert	1	2	3	Orifice Plate			
Rise, in	15				Orifice Dia, in			
Span, in	15				No. Orifices			
No. Barrels	1				Invert Elevation, ft			
Invert Elevation, ft	378.00				Height, ft			
Orifice Coefficient, Co	0.60				Orifice Coefficient, Co			
Length, ft	672							
Barrel Slope, %	.5							
N-Value, n	0.013							
	.		Weirs		A			
Weirs	Riser*	1	2	3	Ancillary			
Shape / Type	Box	Broad Crested			Exfiltration, in/hr			
Crest Elevation, ft	383	383.4						
Crest Length, ft	13	20						
Angle, deg		14 (4:1)						
Weir Coefficient, Cw	3.33	3.33						
384 383 382 (£) 381						5 -4 -3 -2 -2		
380 	10 12 14 Top of Pond —	Disch	20 22 24 arge (cfs) Riser — Broa		30 32 34 36 38	1 40		

Hydrology Studio v 3.0.0.24

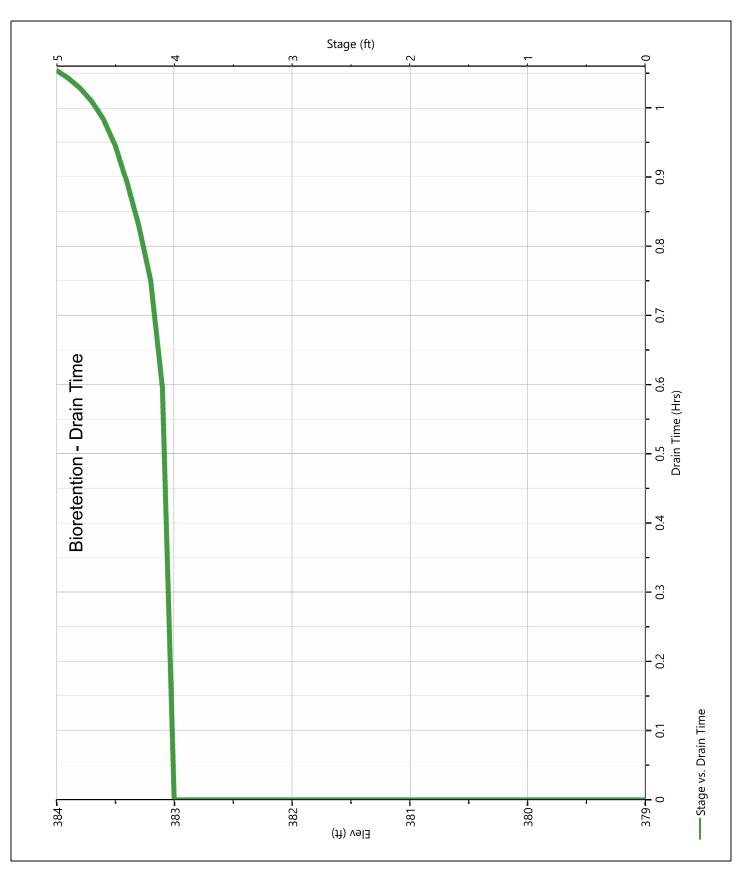
Project Name: Regional Food Bank - Hudson Valley

07-17-2024

Bioretention

Stage-Storage-Discharge Summary

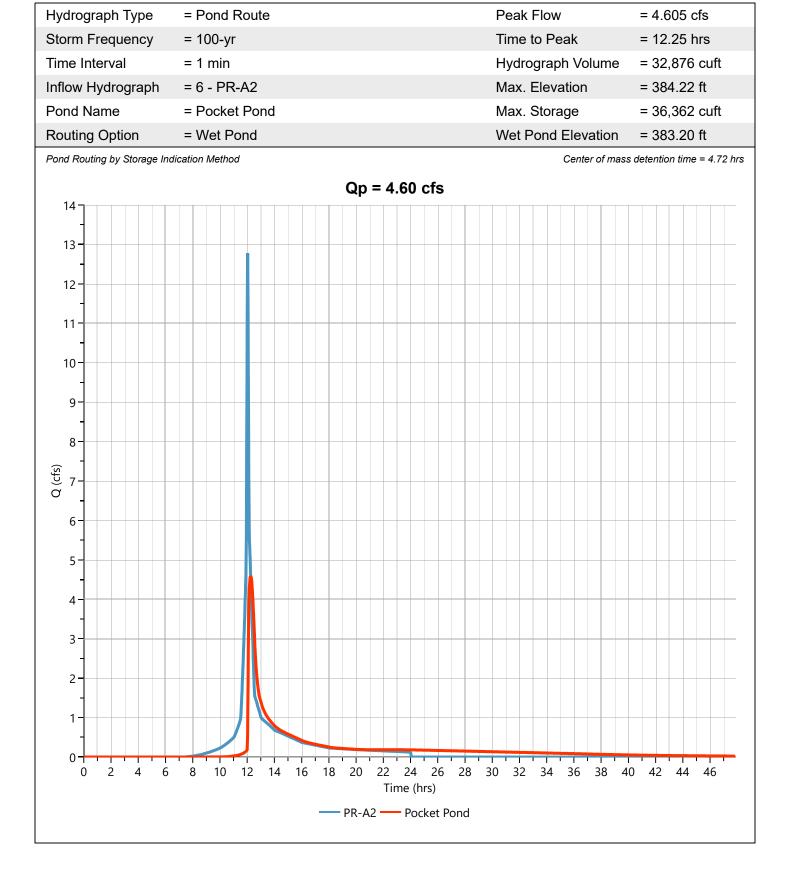
(n) (n) (n) 1 2 3 (r) 1 2 3 (r) (r) (r) (r) 0.00 373.0 0.000 0.000 1.162 0.000 1.00 0.000 0.00 0.00 1.00 0.00	(ft) (cuft) (cfs) 1 2 3 (cfs) 1 2 3 (cfs) (cfs) <th(< th=""><th>Stage</th><th>Elev.</th><th>Storage</th><th>Culvert</th><th>C</th><th>Drifices, cf</th><th>s</th><th>Riser</th><th></th><th>Weirs, cfs</th><th>i</th><th>Pf Riser</th><th>Exfil</th><th>User</th><th>Total</th></th(<>	Stage	Elev.	Storage	Culvert	C	Drifices, cf	s	Riser		Weirs, cfs	i	Pf Riser	Exfil	User	Total
1.00 380.00 1,162 0.000 ic 0.000	1.00380.001,1620.000 ic0.000 ic0.0000.0000.0000.0002.0032.350.000 ic0.000 ic0.0000.0000.0000.0000.0003.00382.006,5640.000 ic0.000 ic0.0000.0000.0000.0000.0003.50382.0010,1630.000 ic0.000 ic0.0000.0000.0000.0000.0004.00383.0015,9340.000 ic0.000 ic0.0000.0000.0000.000	(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
2.00 381.00 3.235 0.000 ic 0.000	2.00 381.00 3.235 0.000 ic 0.000	0.00	379.00	0.000	0.000				0.000	0.000						0.000
3.00 382.00 6,564 0.000 ic 0.000	3.00 382.00 6,564 0.000 ic 0.000 0.000 0.000 3.50 382.50 10,163 0.000 ic 0.000 0.000 0.000 4.00 383.00 15,934 0.000 ic 0.000 0.000 0.000	1.00	380.00	1,162	0.000 ic				0.000	0.000						0.000
3.50 382.50 10,163 0.000 ic 0.000 0.000 0.000 0.000 0.000 4.00 383.00 15,934 0.000 ic 0.000 0.000 0.000 0.000 0.000 0.000 0.000	3.50 382.50 10,163 0.000 ic 0.000 0.000 4.00 383.00 15,934 0.000 ic 0.000 0.000	2.00	381.00	3,235	0.000 ic				0.000	0.000						0.000
4.00 383.00 15,934 0.000 ic 0.000	4.00 383.00 15,934 0.000 ic 0.000 0.000 0.000															
5.00 384.00 30,606 6.007 oc 0.000 33.92 40.73																
		5.00	384.00	30,606	6.807 oc				0.000	33.92						40.73


Hydrology Studio v 3.0.0.24

Bioretention

Project Name: Regional Food Bank - Hudson Valley

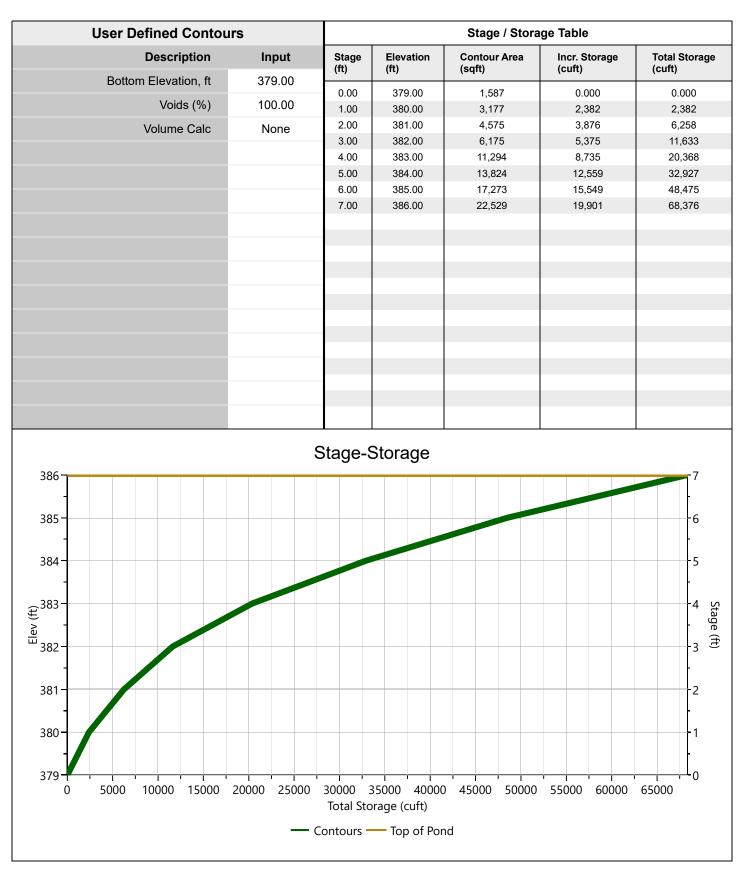
07-17-2024


Pond Drawdown

Hydrology Studio v 3.0.0.24

Pocket Pond

07-17-2024



Hydrology Studio v 3.0.0.24

Pocket Pond

07-17-2024

Stage-Storage

Hydrology Studio v 3.0.0.24

Pocket Pond

07-17-2024

Stage-Discharge

4 3 3	1* 3 3 1 383.2 0.60 1 Broad Cre 384.9 35 14 (4: 3.33 5 14 (4: 3.33	ested 5	2 Wei 2	rs		3		Or N nvert E ce Coe	ifice No. C Eleva He officie	ight, ⁻ ent, Co	n s ft o		
5 00 0 7 13 er* E 4 3 3	3 1 383.2 0.60 1 Broad Cre 384.9 35 14 (4: 3.33	ested 5	2			3		N nvert E ce Coe	No. O Eleva He efficie	orifice tion, - ight, - ent, Co	ft ft o		
00 0 7 13 er* 4 3	1 383.2 0.60 1 Broad Cro 384.9 35 14 (4: 3.33	ested 5	2			3		nvert E	Eleva He efficie	tion, ⁻ ight, ⁻ ent, C cillai	ft o		
00 0 7 13 er* 4 3	383.2 0.60 1 Broad Cre 384.9 35 14 (4: 3.33	ested 5	2			3		ce Coe	He efficie	ight, ⁻ ent, Co	ft o		
0 7 13 13 2 1 4 3 3	0.60 1 3road Cre 384.9 35 14 (4: 3.33	ested 5	2			3	Orifi		And	ent, Co	o ry		
7 13 er* E 4 3	1 Broad Cre 384.(35 14 (4: 3.33	ested 5	2			3	Orific		And	cilla	ry		
13 er* 4 3	Broad Cre 384.9 35 14 (4: 3.33	5	2		3	3							
13 er* E 4 3	Broad Cre 384.9 35 14 (4: 3.33	5	2		3	3							
er* E 4 3 3	Broad Cre 384.9 35 14 (4: 3.33	5	2		3	3							
x E 4 3	Broad Cre 384.9 35 14 (4: 3.33	5	2		3	3							
x E 4 3	Broad Cre 384.9 35 14 (4: 3.33	5			3	3							
4 3 3	384.9 35 14 (4: 3.33	5	scha					Exfilt	ratior	n, in/h)r		
3	35 14 (4: 3.33	1)	scha										
3	14 (4: 3.33		scha										
	3.33		scha										
			scha										
	Stage	e-Di	scha										
													5
												ł	
												-	_
													,
												2	2
30 10			140 ge (cfs		60	180	200	22	20	24	0	260	
		D	Dischar	Discharge (cfs)	Discharge (cfs)		Discharge (cfs)	Discharge (cfs)	0 100 120 140 160 180 200 220 240 260 Discharge (cfs)				

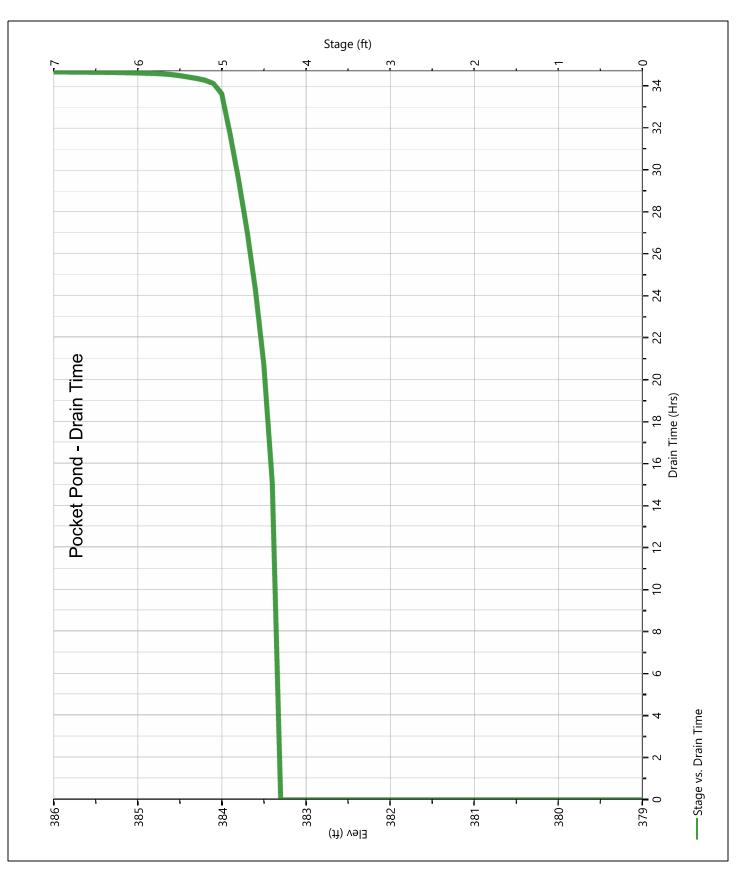
Hydrology Studio v 3.0.0.24

Pocket Pond

07-17-2024

Stage-Storage-Discharge Summary

Stage Elev.	Storage	Culvert	C	Drifices, cf	S	Riser	er Weirs, cfs		Pf Riser	Exfil	User	Total	
(ft) (ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00 379.00	0.000	0.000	0.000			0.000	0.000						0.000
1.00 380.00	2,382	0.000	0.000			0.000	0.000						0.000
2.00 381.00	6,258	0.000	0.000			0.000	0.000						0.000
3.00 382.00	11,633	0.000	0.000			0.000	0.000						0.000
4.00 383.00	20,368	0.000	0.000			0.000	0.000						0.000
5.00 384.00	32,927	0.187 ic	0.187			0.000	0.000						0.187
6.00 385.00	48,475	7.014 oc	0.000			0.000	43.09						50.10
7.00 386.00	68,376	7.453 oc	0.000			0.000	243.5						250.9

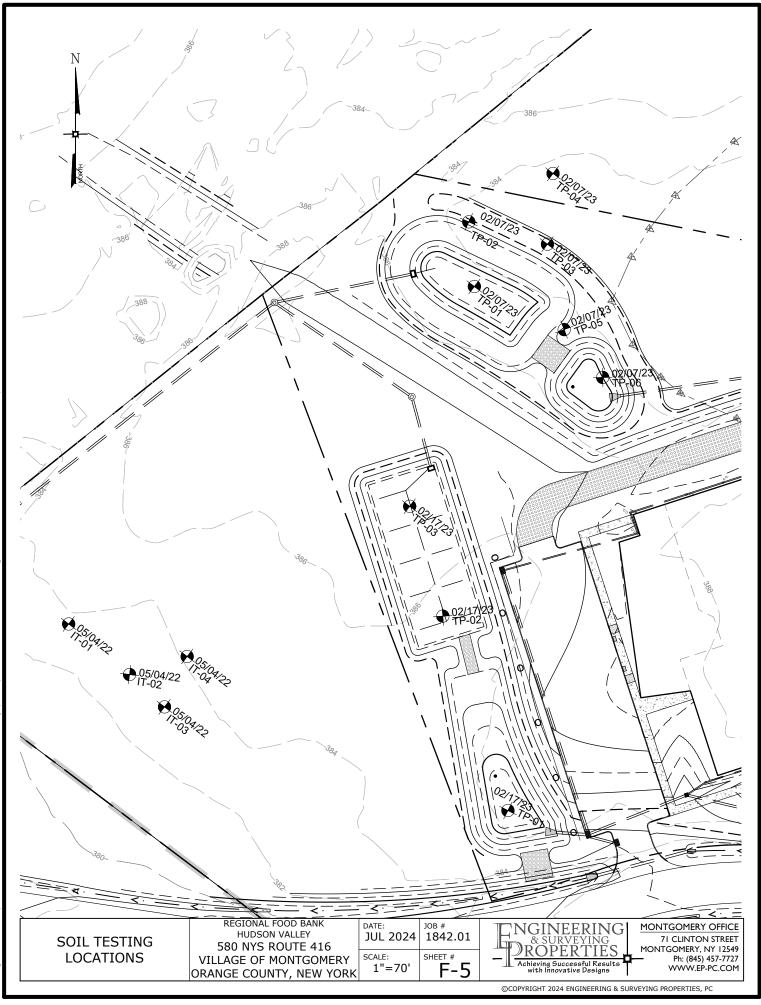

Hydrology Studio v 3.0.0.24

Pocket Pond

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

Pond Drawdown



<u>APPENDIX 11</u> Soil testing results

This page is left intentionally blank

DEEP TEST HOLE RESULTS

TEST HOLE #	DATE	EXIST EL. / BOTTOM EL.	DEPTH	DESCRIPTION
TP-01	05/04/22	384.00' / 377.00'	0" - 6" 6" - 36" 36" - 72"	TOPSOIL TAN CLAY SILTY LOAM DARK BROWN SAND GROUNDWATER AT 72" (±378.00)
TP-02	05/04/22	383.00' / 376.00'	0" - 6" 6" - 36" 36" - 48" 48" - 56"	TOPSOIL TAN CLAY LOAM TAN CLAY LOAM WITH COBBLES GRAY CLAY, GROUNDWATER AT 56"(±378.33)
TP-03	05/04/22	383.40' / 377.40'	0" - 12" 12" - 24" 24" - 36" 36" - 60"	TOPSOIL TAN CLAY LOAM TAN CLAY LOAM WITH COBBLES DARK BROWN SANDY GRAVEL, GROUNDWATER AT 60" (±378.40)
TP-04	05/04/22	384.40' / 377.40'	0" - 12" 12" - 24" 24" - 36" 36" - 56" 56" - 72"	TOPSOIL TAN CLAY SILTY LOAM BROWN SANDY LOAM TAN CLAY WITH GRAY STREAKS BROWN SAND, GROUNDWATER AT 72" (±378.40)
TP-01	02/07/23	384.50' / 378.50'	0" - 12" 12" - 36" 36" - 60" 60" - 72"	TOPSOIL BROWN SILTY CLAY LOAM GRAVELLY LOAM BANK RUN, GROUNDWATER AT 60" (±379.50)
TP-02	02/07/23	383.75' / 377.25'	0" - 12" 12" - 54" 54" - 78"	TOPSOIL BROWN SILTY CLAY LOAM GRAVELLY LOAM, GROUNDWATER AT 66" (±378.25)
TP-03	02/07/23	383.50' / 376.50'	0" - 12" 12" - 48" 48" - 72" 72" - 78" 78" - 84"	TOPSOIL BROWN SILTY CLAY GRAY CLAY GRAVELLY LOAM BANK RUN, GROUNDWATER AT 72" (±377.50)
TP-04	02/07/23	383.67' / 378.67'	0" - 12" 12" - 24" 24" - 51" 51" - 60"	TOPSOIL BROWN SILTY CLAY GRAVELLY LOAM BANK RUN, GROUNDWATER AT 51" (±379.42)
TP-05	02/07/23	384.33' / 379.33'	0" - 12" 12" - 54" 54" - 58" 58" - 60"	TOPSOIL BROWN SILTY CLAY LOAM GRAY CLAY GRAVEL/BANK RUN, GROUNDWATER AT 54" (±379.83)
TP-06	02/07/23	384.55' / 377.55'	0" - 12" 12" - 36" 36" - 42" 42" - 54" 54" - 84"	TOPSOIL BROWN SILTY CLAY LOAM GRAY GRAVEL CLAY LOAM BROWN SILTY CLAY LOAM GRAY CLAY WITH GRAVEL, GROUNDWATER AT 78" (±378.05)
TP-01	02/17/23	386.10' / 378.60'	0" - 12" 12" - 24" 24" - 36" 36" - 90"	TOPSOIL LIGHT BROWN SILTY CLAY LOAM BROWN SILTY CLAY LOAM BROWN SILTY CLAY LOAM WITH GRAVEL
TP-02	02/17/23	385.40' / 377.40'	0" - 12" 12" - 24" 24" - 60" 60" - 78" 78" - 96"	TOPSOIL LIGHT BROWN SILTY CLAY LOAM BROWN SILTY CLAY LOAM GRAY CLAY GRAY CLAY WITH GRAVEL, GROUNDWATER AT 96" (±377.40)
TP-03	02/17/23	386.25' / 377.50'	0" - 12" 12" - 36" 36" - 60" 60" - 78" 78" - 105"	TOPSOIL LIGHT BROWN SILTY CLAY LOAM BROWN SILTY CLAY LOAM GRAY CLAY BANK RUN, GROUNDWATER AT 105" (±377.50)

APPENDIX 12 CONSTRUCTION SITE INSPECTION FORM & NOTICE OF INTENT

This page is left intentionally blank

SWPPP INSPECTION REPORT

TNGINFFRING			Greater than 5 Ac. Waiver? Of Disturbance?	Dama Of
& SURVEYING	W.O. No.: Project		Weather Conditions: Dry	Page Of Rain Snow
ROPERTIES _	Name:		Soil Conditions: Dry	Wet Saturated
Achieving Successful Results with Innovative Designs			Arrival Time :	Photographs Taken?
with Innovative Designs	Location:		Departing Time:	<u> </u>
Owner:	Phon	ie:	Documents on-site?	SWPPP:
Contractor:	Phon		Weekly Inspections:	NOI:
1. Description of current activities onsite and phase o				
	X	ŭ		,
2. Description of the condition of the runoff at all point			ondition of all natural surface wa	
the construction site (including onsite conveyance sys	stems):	within, or immediately	adjacent to the construction site:	
 Identify all erosion and sediment control practices t and/or maintenance: 	that require repair	5. Identify all erosion a properly or are not fun	and sediment control practices th actioning as designed:	at were not installed
 Identify current status of construction for all post-commanagement practices: 	onstruction stormw) required to erosion and sedimen stormwater management practic	
Was the owner and contractor(s) notified o	of the deficiencies		ne (1) business day?	Yes 🗌 No
Notice:				
This inspection was performed solely for GP-08-001				
the purpose of determining compliance with NYSDEC SPDES General Permit:	No	me and Title	Cian	ature
	inar		Sign	ature

NOTICE OF INTENT

New York State Department of Environmental Conservation

Division of Water

625 Broadway, 4th Floor

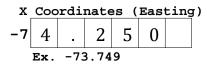
Albany, New York 12233-3505

Stormwater Discharges Associated with <u>Construction Activity</u> Under State Pollutant Discharge Elimination System (SPDES) General Permit # GP-0-20-001 All sections must be completed unless otherwise noted. Failure to complete all items may result in this form being returned to you, thereby delaying your coverage under this General Permit. Applicants must read and understand the conditions of the permit and prepare a Stormwater Pollution Prevention Plan prior to submitting this NOI. Applicants are responsible for identifying and obtaining other DEC permits that may be required.

-IMPORTANT-

RETURN THIS FORM TO THE ADDRESS ABOVE

OWNER/OPERATOR MUST SIGN FORM


				Ov	vner	/Op	era	tor	In	fo	rmat	tic	on										
Owner/Operator	(Compan	ıy N	ame/I	riva	te	Own	er i	Nam	e/M	in:	icir	pal	ity	γN	Iam	e)	 		 				
Regional Fo	odbank	φf	the	Noi	th	eas	te	rn	Nev	v.	Yor	k	In	C									
Owner/Operator	Contact	. Pe	rson	Last	Na	me	(NO	ТС	ONS	JL.	ran'i	Г)	1 1					1					
Owner/Operator	Contact	. Pe	rson	Firs	t N	ame						1	1 1					1					
Owner/Operator	Mailing	ſ Ad	dress	5						-		1	11	· · · · · ·			 1	r					
City										-		1					1						 _
State	Zip] - []																	
Phone (Owner/C	perator)				Faz	< (C)wne	er/C)per		or) -]								
Email (Owner/O	perator)									_		1	1 1					1					 _
FED TAX ID		(r	not r	equii	red	for	ir	ndiv	idu	al	s)											I	

Projec	t Site	e Info	orma	tion								
Project/Site Name												
						<u> </u>	1 1					
Street Address (NOT P.O. BOX)	<u> </u>			- 1 1			1 1					1
Side of Street												
○ North ○ South ○ East ○ West												
City/Town/Village (THAT ISSUES BUILDING	G PERM	IIT)										
State Zip Count	v								DEC	Regi	on	
											.011	
					_							
Name of Nearest Cross Street												
Distance to Nearest Cross Street (Feet)			Proj								
				○ No :	rtn	\bigcirc S	outh	0	Eas	τ	west	5
Tax Map Numbers Section-Block-Parcel				Tax	Мар	Numb	ers					
Section-Block-Parcel					1							

1. Provide the Geographic Coordinates for the project site. To do this, go to the NYSDEC Stormwater Interactive Map on the DEC website at:

https://gisservices.dec.ny.gov/gis/stormwater/

Zoom into your Project Location such that you can accurately click on the centroid of your site. Once you have located the centroid of your project site, go to the bottom right hand corner of the map for the X, Y coordinates. Enter the coordinates into the boxes below. For problems with the interactive map use the help function.

YС	Y Coordinates (Nort)										
4	1		5	1	2						
Ex.	42	. 652	2								

2. What is the nature of this construction project?
\bigcirc New Construction
\bigcirc Redevelopment with increase in impervious area
\bigcirc Redevelopment with no increase in impervious area

3.	Select the predominant land use for both p SELECT ONLY ONE CHOICE FOR EACH	re and post development conditions.
	Pre-Development Existing Land Use	Post-Development Future Land Use
	⊖ FOREST	○ SINGLE FAMILY HOME <u>Number_</u> of Lots
	\bigcirc PASTURE/OPEN LAND	○ SINGLE FAMILY SUBDIVISION
	○ CULTIVATED LAND	○ TOWN HOME RESIDENTIAL
	○ SINGLE FAMILY HOME	○ MULTIFAMILY RESIDENTIAL
	○ SINGLE FAMILY SUBDIVISION	○ INSTITUTIONAL/SCHOOL
	\bigcirc TOWN HOME RESIDENTIAL	○ INDUSTRIAL
	○ MULTIFAMILY RESIDENTIAL	○ COMMERCIAL
	○ INSTITUTIONAL/SCHOOL	○ MUNICIPAL
	\bigcirc INDUSTRIAL	○ ROAD/HIGHWAY
	○ COMMERCIAL	○ RECREATIONAL/SPORTS FIELD
	○ ROAD/HIGHWAY	○ BIKE PATH/TRAIL
	○ RECREATIONAL/SPORTS FIELD	○ LINEAR UTILITY (water, sewer, gas, etc.)
	○ BIKE PATH/TRAIL	○ PARKING LOT
	\bigcirc LINEAR UTILITY	○ CLEARING/GRADING ONLY
	○ PARKING LOT	\bigcirc DEMOLITION, NO REDEVELOPMENT
	O OTHER	\bigcirc WELL DRILLING ACTIVITY *(Oil, Gas, etc.)

*Note: for gas well drilling, non-high volume hydraulic fractured wells only

4. In accordance with the larger common plan of enter the total project site area; the total existing impervious area to be disturbed (for activities); and the future impervious area disturbed area. (Round to the nearest tenth of	area to be disturbed; r redevelopment constructed within the
	Impervious Future Impervious Be Disturbed Disturbed Area
5. Do you plan to disturb more than 5 acres of	soil at any one time? O Yes O No
6. Indicate the percentage of each Hydrologic S	oil Group(HSG) at the site.
A B C ● ● ● ●	D %
7. Is this a phased project?	\bigcirc Yes \bigcirc No
8. Enter the planned start and end dates of the disturbance activities.	End Date

8600089821

/	Identify discharge		rest	surfa	ace	wat	erbc	ody(ies) t	0 1	vhio	ch	cor	nst:	ruc	ti	on	si	te	ru	nof	f١	wil	1		
Name																						-	1				_
9a.	Type (of water	body	ident	tifi	.ed :	in Q	ues	tio	n 9'	?																
0	Wetland	/ State	Juri	sdict	cion	. On	Sit	e (i	Ans	wer	9b))															
0	Wetland	/ State	Juri	sdict	cion	. Off	E Si	te																			
0	Wetland	/ Federa	al Ju	risdi	lcti	on (On S	ite	(A1	nswe	er	9b)															
0	Wetland	/ Federa	al Ju	risdi	lcti	on (Dff	Site	e																		
0	Stream /	Creek (On Si	te																							
0	Stream /	Creek (off s	lite																							
0	River Or	. Site																									
0	River Of	f Site								9	b.	F	Iow	Wa	is t	the	W	etl	.an	d i	der	nti	fie	ed?			
0	Lake On	Site										O I	Reg	rula	ato	ry	Ma	р									
0	Lake Off	Site										O I	Del	ine	eat	ed	by	Co	ons	ult	an	t					
0	Other Ty	pe On Si	ite									O I	Del	ine	eat	ed	by	Aı	cmy	Cc	orp	s c	of 3	Eng	ine	eer	s
0	Other Ty	pe Off :	Site									\circ	Oth	ler	(i	der	ıti	fy)							_	
																										_	
10.		ne surfa										bee	en	ide	ent	ifi	ed	as	s a		C) Ye	28	0	No		
	303(d) segmen	tin	Appei	ndix	ςΕά	of G	P-0	-20	-00	1?																
11.		is proje					e of	th	e W	ate:	rsł	neds	зi	der	nti:	fie	d	in				\					
	Append	dix C of	GP-()-20-0	001?) Ye	28	0	No		
10	Ta th	n nroto-	+ 1		4 m	076	of	+hc		tor	ah a	4															
12.	areas	e projec associa										eu									C) Ye	s	0	No		
	waters If no	₃? , skip q	uesti	ion 1	3.																						

13.	Does this construction activity disturb land with no existing impervious cover and where the Soil Slope Phase is identified as an E or F on the USDA Soil Survey? If Yes, what is the acreage to be disturbed?	⊖ Yes	O No
	•		

14. Will the project disturb soils within a State regulated wetland or the protected 100 foot adjacent O Yes O No area?

•	6403089820	

15.	Does the site runoff enter a separate storm sewer system (including roadside drains, swales, ditches, culverts, etc)?														
16.	What is the name of the municipality/entity that owns the separate storm sewer system?														
17.	Does any runoff from the site enter a sewer classified \bigcirc Yes \bigcirc No \bigcirc Unknown as a Combined Sewer?														
18.	Will future use of this site be an agricultural property as defined by the NYS Agriculture and Markets Law? \bigcirc Yes \bigcirc No														
19.	Is this property owned by a state authority, state agency, O Yes O No federal government or local government?														
20.	Is this a remediation project being done under a Department approved work plan? (i.e. CERCLA, RCRA, Voluntary Cleanup O Yes O No Agreement, etc.)														
21.	Has the required Erosion and Sediment Control component of the SWPPP been developed in conformance with the current NYS O Yes O No Standards and Specifications for Erosion and Sediment Control (aka Blue Book)?														
22.	Does this construction activity require the development of a SWPPP that includes the post-construction stormwater management practice component (i.e. Runoff Reduction, Water Quality and O Yes O No Quantity Control practices/techniques)? If No, skip questions 23 and 27-39.														
23.	Has the post-construction stormwater management practice component of the SWPPP been developed in conformance with the current NYS O Yes O No Stormwater Management Design Manual?														

24	
, 71	
0251089825 24. The Stormwater Pollution Prevention Plan (SWPPP) was prepared by: ○ Professional Engineer (P.E.) ○ Soil and Water Conservation District (SWCD) ○ Registered Landscape Architect (R.L.A) ○ Certified Professional in Erosion and Sediment Control (CPESC) ○ Owner/Operator ○ Other SWPPP Preparer ○ Contact Name (Last, Space, First)	
SWPI	PP Preparer
Cont	act Name (Last, Space, First)
Mail	ing Address
City	,
Stat	
Phor	
Emai	
ĻĻ	

SWPPP Preparer Certification

I hereby certify that the Stormwater Pollution Prevention Plan (SWPPP) for this project has been prepared in accordance with the terms and conditions of the GP-0-20-001. Furthermore, I understand that certifying false, incorrect or inaccurate information is a violation of this permit and the laws of the State of New York and could subject me to criminal, civil and/or administrative proceedings.

First Name	MI
Last Name	
Signature	 7
	Date

25.	•		as a ract										ce :	scl	heo	du	ıle	fo	r	the	p.	lanı	ne	d	ma	ana	age	eme	nt	;			С) Ye	s	С) Nc	>
26.			elec nplo:	ye	d c	on	th	er	pro	oje	ct	S	ite	:	seo	di	.mer	ıt	CC	ontr	ol													-				
			-	.e	шр		ar	Y	ы	LIL		u.	ral	-								<u>v</u>	eç	Je	LC	ac	τv	re	M	ea	S	IT 6	22	5				
			⊖ Ch	ec	k i	Dan	ıs														С	Br	us	sh	M	at	ti	ng										
			⊖ Cc	ns	str	uct	ic	n	Rc	ad	Sta	ab	ili	za	ti	0	n				С	Du	ne	•	St	ab	i1	iza	it:	ioı	n							
			0 Du	st	C C	ont	rc	1													С	Gr	as	sse	ed	W	at	erw	va	Y								
			⊖ Ea	rt	h	Dik	ce														С	Mu	lc	:h:	in	g												
			⊖ Le	ve	1	Spr	ea	de	r												С	Pr	ot	e	ct:	in	g	Veg	je	tat	ti	on						
			⊖ Р €	ri	me	ter	: I	lik	e/	'Swa	ale										С	Re	cr	ea	at:	io	n	Are	ea	II	np	rov	ze	emen	t			
			0 Pi	pe	e S	lor	e	Dr	ai	n											С	Se	eð	liı	ng													
			() PC	rt	ab	le	Se	di	me	ent	Та	nk	:								С) So	dd	liı	ng													
			⊖ Rc	cl	D	am															С) St	ra	w,	/Н	ay	в	ale	e 1	Dil	ce							
			⊖ Se	di	me	nt	Ba	si	n												С) St	re	aı	mb	an	k	Prc	ote	ect	ti	on						
			⊖ Se	d	me	nt	Tr	ap	s												С	Те	mŗ		ra	ry	S	wal	le									
			⊖ si	1 t	F	enc	e														С	То	ps	30	i 1	in	g											
			0 st	ał	i l	ize	ed	Co	ns	stru	ict:	ic	n E	Int	ra	in	ce				С	Ve	ge	eta	at	in	g	Wat	e	rwa	aya	s						
			O St									ot	ect	ic	n							P	er	rm	ar	ne	nt	: 5	t:	ru	ct	cur	ra	<u>al</u>				
	O Straw/Hay Bale Dike O Temporary Access Waterway Crossing														С	De	br	:i:	s 1	Ва	si	n																
						_							_					g			С	Di	ve	er	si	on	L											
			○ Te ○ Te			_					111	L	тле	1.5	i T C	211					С	Gr	aċ	le	S	ta	bi	liz	a	tid	on	st	:r	uct	ur	e		
			0 Ie 0 Tu			_															С	La	nd	10	Gra	ad	in	g										
			0 IU			_		uL	La												С	Li	ne	ed	W	at	er	way	,	(R	ocl	k)						
			U Wa		÷Г.	Dai	. 8														С	Pa	ve	ed	C	ha	nn	el	()	Coi	nci	ret	:e	e)				
Biotechnical													С	Pa	ve	ed	F	lu	me																			
										_											С	Re	ta	ii	ni	ng	W	all	L									
			ОВ:					ınç	3												С	Ri	pr	a	p	sl	op	еF	Pro	ote	ect	tic	on	L				
			() Wa	at	tli	.ng																Ro																
○ Stream																																						
<u>(</u>)th	her			1			1			<u>г</u> т		1 1								-											1	-		_	-	-	1

Post-construction Stormwater Management Practice (SMP) Requirements

<u>Important</u>: Completion of Questions 27-39 is not required if response to Question 22 is No.

- 27. Identify all site planning practices that were used to prepare the final site plan/layout for the project.
 - \bigcirc Preservation of Undisturbed Areas
 - Preservation of Buffers
 - O Reduction of Clearing and Grading
 - O Locating Development in Less Sensitive Areas
 - Roadway Reduction
 - \bigcirc Sidewalk Reduction
 - Driveway Reduction
 - Cul-de-sac Reduction
 - Building Footprint Reduction
 - Parking Reduction
- 27a. Indicate which of the following soil restoration criteria was used to address the requirements in Section 5.1.6("Soil Restoration") of the Design Manual (2010 version).
 - All disturbed areas will be restored in accordance with the Soil Restoration requirements in Table 5.3 of the Design Manual (see page 5-22).
 - O Compacted areas were considered as impervious cover when calculating the WQv Required, and the compacted areas were assigned a post-construction Hydrologic Soil Group (HSG) designation that is one level less permeable than existing conditions for the hydrology analysis.
- 28. Provide the total Water Quality Volume (WQv) required for this project (based on final site plan/layout).

Tota	L WQv	Re	qui	lre	đ
					acre-feet

29. Identify the RR techniques (Area Reduction), RR techniques(Volume Reduction) and Standard SMPs with RRv Capacity in Table 1 (See Page 9) that were used to reduce the Total WQv Required(#28).

Also, provide in Table 1 the total impervious area that contributes runoff to each technique/practice selected. For the Area Reduction Techniques, provide the total contributing area (includes pervious area) and, if applicable, the total impervious area that contributes runoff to the technique/practice.

Note: Redevelopment projects shall use Tables 1 and 2 to identify the SMPs used to treat and/or reduce the WQv required. If runoff reduction techniques will not be used to reduce the required WQv, skip to question 33a after identifying the SMPs.

7738089822

Table 1	-
---------	---

Runoff Reduction (RR) Techniques and Standard Stormwater Management Practices (SMPs)

O Conservation of Natural Areas (RR-1) and/or O Sheetflow to Riparian Buffers/Filters Strips (RR-2) and/or O Tree Planting/Tree Pit (RR-3) and/or O Tree Planting/Tree Pit (RR-3) and/or O Tree Planting/Tree Pit (RR-3) and/or O Disconnection of Rooftop Runoff (RR-4) and/or Re Techniques (Volume Reduction) O Vegetated Swale (RR-5) Rain Garden (RR-6) Stormwater Planter (RR-7) Rain Barrel/Cistern (RR-8) O Forous Pavement (RR-9) Green Roof (RR-10) Infiltration Trench (I-1) Dry Well (I-3)		Total Contributing		Total (
Sheetflow to Riparian Buffers/Filters Strips (RR-2) . and/or Tree Planting/Tree Pit (RR-3) . and/or Disconnection of Rooftop Runoff (RR-4) . and/or RR Techniques (Volume Reduction) . and/or Vegetated Swale (RR-5) . . Rain Garden (RR-6) . . Stormwater Planter (RR-7) . . Rain Barrel/Cistern (RR-8) . . O Forous Pavement (RR-9) . . Green Roof (RR-10) . . Standard SMPs with Rev Capacity . . Infiltration Trench (I-1) . . Dry Well (I-3) . . Dry Well (I-3) . . Dry Well (I-3) . . Wet Fond (P-5) . . Dry Svale (0-1) . . Standard SMPs . . Mutropool Extended Detention (P-1) . . Wet Fond (P-2) . . Mutropool Extended Detention (P-3) . . Sufface Sand Filter (F-1)	RR Techniques (Area Reduction)	Area (acres)	Im	perviou	IS .	Are	a(acres)
Buffers/Filters Strips (RR-2) and/or - O Tree Planting/Tree Pit (RR-3) and/or - O Disconnection of Rooftop Runoff (RR-4) and/or - Paisconnection of Rooftop Runoff (RR-4) and/or - Rain Garden (RR-6) and/or - Rain Garden (RR-6) - - Stormwater Planter (RR-7) - - O Porous Pavement (RR-9) - - Green Roof (RR-10) - - Standard SMPs with RRv Capacity - - Infiltration Trench (I-1) - - Dry Well (I-3) - - Underground Infiltration System (I-4) - - Dry Wale (0-1) - - - Standard SMPs - - - Mucropool Extended Detention (P-1) - - - Wet Pond (P-2) - - - - Wat Extended Detention (P-3) - - - - Wat Pond (P-5) - - - - - Duderground Sand Filter (F-1) <t< td=""><td></td><td></td><td>and/or</td><td></td><td></td><td>•</td><td></td></t<>			and/or			•	
Disconnection of Rooftop Runoff (RR-4)	O Sheetflow to Riparian Buffers/Filters Strips (RR-2)		and/or		,	•	
RR Techniques (Volume Reduction) Vegetated Swale (RR-5) Rain Garden (RR-6) Stormwater Planter (RR-7) Rain Barrel/Cistern (RR-8) Porous Pavement (RR-9) Green Roof (RR-10) Standard SMPs with RRV Capacity Infiltration Trench (I-1) Dry Well (I-3) Underground Infiltration System (I-4) Dry Swale (0-1) Standard SMPs Micropool Extended Detention (P-1) Wet Extended Detention (P-3) Wet Extended Detention (P-4) Watifier (F-1) Organic Filter (F-4) Organic Filter (F-4) Organic Filter (F-4) Organic Filter (F-4) Organic Filter (Wet-3)	\bigcirc Tree Planting/Tree Pit (RR-3)	•	and/or		'	-	
O Vegetated Swale (RR-5)	\bigcirc Disconnection of Rooftop Runoff (RR-4)	••	and/or			•	
Rain Garden (RR-6) . Stormwater Planter (RR-7) . Rain Barrel/Cistern (RR-8) . Porous Pavement (RR-9) . Green Roof (RR-10) . Standard SMPs with RRV Capacity . Infiltration Trench (I-1) . Dry Well (I-3) . Underground Infiltration System (I-4) . Dry Swale (O-1) . Standard SMPS . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) .	RR Techniques (Volume Reduction)						
Stormwater Planter (RR-7) . Rain Barrel/Cistern (RR-8) . Porous Pavement (RR-9) . Green Roof (RR-10) . Infiltration Trench (I-1) . Infiltration Basin (I-2) . Dry Well (I-3) . Underground Infiltration System (I-4) . Bioretention (F-5) . Dry Swale (0-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Organic Filter (F-4) . Shallow Wetland (W-1) . Prod/Wetland System (W-3) .	\bigcirc Vegetated Swale (RR-5) \cdots	•••••			_ ·	•	
Rain Barrel/Cistern (RR-8) . Porous Pavement (RR-9) . Green Roof (RR-10) . Infiltration Trench (I-1) . Infiltration Basin (I-2) . Dry Well (I-3) . Underground Infiltration System (I-4) . Bioretention (F-5) . Dry Swale (0-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wattiple Pond System (P-4) . Surface Sand Filter (F-1) . Underground Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Pond/Wetland System (W-3) .	\bigcirc Rain Garden (RR-6)		•••••		'	•	
O Porous Pavement (RR-9)	\bigcirc Stormwater Planter (RR-7)	•••••••••••••••••	• • • • • •		'	•	
Green Roof (RR-10)	\bigcirc Rain Barrel/Cistern (RR-8)		• • • • • •		'	•	
Standard SMPs with RRV Capacity O Infiltration Trench (I-1) O Infiltration Basin (I-2) O Dry Well (I-3) O Underground Infiltration System (I-4) O Bioretention (F-5) O Dry Swale (0-1) Standard SMPS Micropool Extended Detention (P-1) Wet Pond (P-2) Wet Extended Detention (P-3) Wultiple Pond System (P-4) Surface Sand Filter (F-1) O Underground Sand Filter (F-2) O Perimeter Sand Filter (F-3) Organic Filter (F-4) O Standard Wetland (W-1) O Pond/Wetland System (W-3)	\bigcirc Porous Pavement (RR-9)	••••	• • • • • •			·L	
O Infiltration Trench (I-1) . O Infiltration Basin (I-2) . O Dry Well (I-3) . O Underground Infiltration System (I-4) . O Bioretention (F-5) . O Dry Swale (O-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Surface Sand Filter (F-1) . O Underground Sand Filter (F-2) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .	\bigcirc Green Roof (RR-10)						
Infiltration Basin (I-2)	Standard SMPs with RRv Capacity						
Infiltration Basin (I-2)	\bigcirc Infiltration Trench (I-1) ••••••••••••••••••••••••••••••••••••					•	
Ory Well (I-3)							
Underground Infiltration System (I-4)							
Bioretention (F-5) . Dry Swale (0-1) . Standard SMPs . Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Pocket Pond (P-5) . Surface Sand Filter (F-1) . Organic Filter (F-2) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .							
Ory Swale (0-1) . Standard SMPs Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Pocket Pond (P-5) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) .						•	
Standard SMPs Micropool Extended Detention (P-1) Wet Pond (P-2) Wet Extended Detention (P-3) Wat Extended Detention (P-3) Multiple Pond System (P-4) Pocket Pond (P-5) Surface Sand Filter (F-1) Underground Sand Filter (F-2) Perimeter Sand Filter (F-3) Organic Filter (F-4) Shallow Wetland (W-1) Extended Detention Wetland (W-2) Pond/Wetland System (W-3)	\bigcirc Dry Swale (0-1)					•	
Micropool Extended Detention (P-1) . Wet Pond (P-2) . Wet Extended Detention (P-3) . Multiple Pond System (P-4) . Pocket Pond (P-5) . Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) .	-						
Wet Pond (P-2) • Wet Extended Detention (P-3) • Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	Standard SMPs						
Wet Extended Detention (P-3) • Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	\bigcirc Micropool Extended Detention (P-1)						
Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	\bigcirc Wet Pond (P-2)	••••••	••••			•	
Multiple Pond System (P-4) • Pocket Pond (P-5) • Surface Sand Filter (F-1) • Underground Sand Filter (F-2) • Perimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •	\bigcirc Wet Extended Detention (P-3)					•	
Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .							
Surface Sand Filter (F-1) . Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .	\bigcirc Pocket Pond (P-5) ·····		••••			•	
Underground Sand Filter (F-2) . Perimeter Sand Filter (F-3) . Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .							
OPerimeter Sand Filter (F-3) • Organic Filter (F-4) • Shallow Wetland (W-1) • Extended Detention Wetland (W-2) • Pond/Wetland System (W-3) •					,		
Organic Filter (F-4) . Shallow Wetland (W-1) . Extended Detention Wetland (W-2) . Pond/Wetland System (W-3) .						•	
O Shallow Wetland (W-1) • O Extended Detention Wetland (W-2) • O Pond/Wetland System (W-3) •	\bigcirc Organic Filter (F-4)	•••••	••••				
○ Extended Detention Wetland (W-2) • • ○ Pond/Wetland System (W-3) • •						•	
○ Pond/Wetland System (W-3)	\bigcirc Extended Detention Wetland (W-2)					•	
						•	
					_],	•	
○ Wet Swale (0-2)						•	

0762089822									_
	Table 2 -	Alternativ (DO NOT IN USED FOR I	NCLUDE PF			ſĠ			
Alternative SMP							al Contr vious Ar		
	·	• • • • • • • • • • •	•••••	• • • • • • •	• • • • • • • • • • • • • • • • • • •	··			_
O Other Provide the name proprietary pract					(i.e.	•• 🗌	• [_		
Name									
	ent projects which ons 28, 29, 33 and ed and total WQv	d 33a to p	rovide SI	MPs us	ed, tot				
	ne Total RRv prov MPs with RRv capa						me Reduo	ction)	and
Total RRv	provided	et							
total WQv r If Yes, go	al RRv provided (required (#28). to question 36.	#30) great	er than	or equ	al to	the	0	Yes	O No
	e Minimum RRv req Rv Required = (P)				c)]				
Minimum RR	v Required	et							
Minimum RRV If Yes, go <u>Note</u> : Us specific 100% of specific 100% of SWPPP. If No, sizi	al RRv provided (r Required (#32)? to question 33. se the space prove site limitation WQv required (#2 c site limitation the WQv required .ng criteria has SWPPP preparer m	rided in qu s and just 8). A <u>det</u> s and just (#28) mus not been m	estion # ificatio <u>ailed</u> ev ificatio t also b et, so N	39 to n for aluati n for e incl OI can	summar not rea on of not rea uded in not b a	<u>ize</u> the ducing the ducing n the e	e	Yes	O No

1766089827

33. Identify the Standard SMPs in Table 1 and, if applicable, the Alternative SMPs in Table 2 that were used to treat the remaining total WQv(=Total WQv Required in 28 - Total RRv Provided in 30).

Also, provide in Table 1 and 2 the total <u>impervious</u> area that contributes runoff to each practice selected.

Note: Use Tables 1 and 2 to identify the SMPs used on Redevelopment projects.

33a. Indicate the Total WQv provided (i.e. WQv treated) by the SMPs identified in question #33 and Standard SMPs with RRv Capacity identified in question 29. WQv Provided acre-feet Note: For the standard SMPs with RRv capacity, the WQv provided by each practice = the WQv calculated using the contributing drainage area to the practice - RRv provided by the practice. (See Table 3.5 in Design Manual) Provide the sum of the Total RRv provided (#30) and 34. the WQv provided (#33a). Is the sum of the RRv provided (#30) and the WQv provided 35. (#33a) greater than or equal to the total WQv required (#28)? 🔾 Yes 🔷 No If Yes, go to question 36. If No, sizing criteria has not been met, so NOI can not be processed. SWPPP preparer must modify design to meet sizing criteria. Provide the total Channel Protection Storage Volume (CPv) required and 36. provided or select waiver (36a), if applicable. CPv Required CPv Provided acre-feet acre-feet 36a. The need to provide channel protection has been waived because: O Site discharges directly to tidal waters or a fifth order or larger stream. \bigcirc Reduction of the total CPv is achieved on site through runoff reduction techniques or infiltration systems.

37. Provide the Overbank Flood (Qp) and Extreme Flood (Qf) control criteria or select waiver (37a), if applicable.

Total Overbank Flood Control Criteria (Qp)

Pre-Development	Post-development
Total Extreme Flood Control	Criteria (Qf)
Pre-Development	Post-development
CFS	CFS

37a.	The need to meet the Qp and Qf criteria has been waived because:
	\bigcirc Site discharges directly to tidal waters
	or a fifth order or larger stream.
	\bigcirc Downstream analysis reveals that the Qp and Qf
	controls are not required

38. Has a long term Operation and Maintenance Plan for the post-construction stormwater management practice(s) been
O Yes
No developed?

If Yes, Identify the entity responsible for the long term Operation and Maintenance

39. Use this space to summarize the specific site limitations and justification for not reducing 100% of WQv required(#28). (See question 32a) This space can also be used for other pertinent project information.

. 4285089826

40.	Identify other DEC permits, existing and new, that are required for this project/facility.
	○ Air Pollution Control
	○ Coastal Erosion
	\bigcirc Hazardous Waste
	\bigcirc Long Island Wells
	\bigcirc Mined Land Reclamation
	🔿 Solid Waste
	\bigcirc Navigable Waters Protection / Article 15
	○ Water Quality Certificate
	○ Dam Safety
	○ Water Supply
	○ Freshwater Wetlands/Article 24
	\bigcirc Tidal Wetlands
	\bigcirc Wild, Scenic and Recreational Rivers
	\bigcirc Stream Bed or Bank Protection / Article 15
	○ Endangered or Threatened Species(Incidental Take Permit)
	○ Individual SPDES
	○ SPDES Multi-Sector GP
	0 0ther
	○ None

41.	Does this project require a US Army Corps of Engineers Wetland Permit? If Yes, Indicate Size of Impact.	⊖ Yes	○ No
42.	Is this project subject to the requirements of a regulated, traditional land use control MS4? (If No, skip question 43)	○Үез	() No
43.	Has the "MS4 SWPPP Acceptance" form been signed by the principal executive officer or ranking elected official and submitted along with this NOI?	⊖ Yes	() No
44.	If this NOI is being submitted for the purpose of continuing or transferring coverage under a general permit for stormwater runoff from construction activities, please indicate the former SPDES number assigned.		

Owner/Operator Certification

I have read or been advised of the permit conditions and believe that I understand them. I also understand that, under the terms of the permit, there may be reporting requirements. I hereby certify that this document and the corresponding documents were prepared under my direction or supervision. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. I further understand that coverage under the general permit will be identified in the acknowledgment that I will receive as a result of submitting this NOI and can be as long as sixty (60) business days as provided for in the general permit. I also understand that, by submitting this NOI, I am acknowledging that the SWPPP has been developed and will be implemented as the first element of construction, and agreeing to comply with all the terms and conditions of the general permit for which this NOI is being submitted.

Print First Name	MI			
Print Last Name				
Owner/Operator Signature				
	Date			

This page is left intentionally blank

<u>APPENDIX 13</u> <u>CONSTRUCTION WASTE</u> <u>MANAGEMENT & SPILL</u> <u>PREVENTION PLANS</u>

This page is left intentionally blank

CONSTRUCTION WASTE MANAGEMENT & SPILL PREVENTION PLAN

Early in the construction activities, land clearing materials will be collected and recycled either off site or re-used on site as erosion control materials. During early phase construction activities, cardboard, concrete, metal, wood and general trash collection dumpsters will be on site for collection and processing. As the project progresses, concrete dumpsters will be changed over to drywall collection, site clearing dumpsters will be changed over to finish material containers, etc. Typically, (4) open top containers will be on site for the duration of the project. General waste and cardboard/paper containers will be on site for the duration of the project. The contractor will be responsible for organizing and placing containers on site and timely removal/replacement when containers are filled to capacity. As necessary, the contractor will provide areas of collection or hoppers for subcontractors to utilize for intermediate storage of construction and demolition (CD) materials. All containers will be clearly identified with signage indicating stored materials.

Those CD materials generated on this project will be salvaged and re-processed as listed. The contractor will research available processing sources specific to the job site and make all trades aware of project qualifying CD recyclable materials as follows:

Brick: Materials will be stored on site and palletized by processor who will resell as product.

<u>Cardboard:</u> Materials will be separated on the jobsite and stored within dedicated on-site dumpster and delivered loose to processor. Processor will bale materials and deliver/resell to end market users.

<u>Concrete:</u> Scrap and loose materials will either be crushed on site and used for aggregate or stored within dedicated on-site dumpster and delivered to processor. Processor will reuse or resell materials as clean fill back or crush and use for aggregate.

<u>Metals</u>: Materials will be sorted and stored within dedicated on-site dumpster and delivered to processor. Processor will sell materials to metal recyclers (steel, aluminum, brass, copper, lead, stainless).

<u>Stone and Granite:</u> Materials will be collected on site in piles or containers and processor will palletize and haul materials. Processor will re-sell as product or crushed and use as aggregate.

<u>Plastic, paper goods, and aluminum cans</u>: Materials will be collected on job site within construction trailers, cantina areas, etc. and stored in on-site trailers. Materials will be hauled/recycled by processor.

<u>Drywall</u>: Waste materials will be sorted and collected in dedicated on-site containers or materials will be ground on site and used as an erosion control product. Hauled materials to processor will be processed as a soil amendment or used in alternate fuel mixture.

<u>Wood or Lumber</u>: Materials will be sorted and stored on-site within dedicated on-site containers and either resold as retail lumber by processor or ground and mixed with commercial land

clearing and/or approved materials for erosion control applications. Lumber will need to be clean, no paint or other wood treatment.

<u>Land Clearing Debris:</u> Woody materials (stumps, large limbs) will be ground on-site and used for soil erosion control products or hauled to processor to be ground as re-sold as erosion control products.

<u>Roofing Shingles:</u> Materials will be stored on site and processed as temporary road base, mixed into hot asphalt mix or used as alternate fuel blend or hauled offsite via appropriate methods to an authorized disposal/recycling facility.

<u>Fuel Tanks</u>: On site storage of fuel chemicals shall be equipped with a spill kit. The contractor must provide secondary containment for storing any hazardous chemicals on site. <u>Equipment storage</u>: All equipment stored on site shall be inspected daily by the contractor for any oil or lubricant spills or leaks. Any leaks shall be repaired immediately. In addition all equipment must be closely inspected prior to working in the Town R.O.W.

<u>Spill Response:</u> The contractor shall clean all spills immediately and shall report all spills to the New York State Department of Environmental Conservation.

This Plan will be displayed in the construction jobsite trailer at all times.

<u>APPENDIX 14</u> <u>Shpo documents</u>

This page is left intentionally blank

Parks, Recreation, and Historic Preservation

KATHY HOCHUL Governor ERIK KULLESEID Commissioner

March 4, 2022

Mary Catherine Welch Office Manager Engineering & Surveying Properties, PC 71 Clinton Street Montgomery, NY 12549

Re: SEQRA Food Bank of the Hudson Valley 574 State Route 416, Montgomery 22PR00930

Dear Mary Catherine Welch:

Thank you for requesting the comments of the Division for Historic Preservation of the Office of Parks, Recreation and Historic Preservation (OPRHP) as part of your SEQRA process. These comments are those of OPRHP and relate only to Historic/Cultural resources. They do not include potential environmental impacts to New York State Parkland that may be involved in or near your project. Such impacts must be considered as part of the environmental review of the project pursuant to the State Environmental Quality Review Act (New York Environmental Conservation Law Article 8) and its implementing regulations (6 NYCRR Part 617).

The proposed project area is located adjacent to the Harrison Meeting House Site and Cemetery, listed on both the State and National Registers of Historic Places. Therefore, under SEQRA we have reviewed the project and offer the following comment regarding potential impacts to architectural or archaeological resources:

1. We recommend planting of a vegetative buffer between the Harrison Meeting House Site and Cemetery and the proposed warehouse development.

If the lead agency concludes that additional studies would be beneficial to identify and/or assess potential impacts to archeological and historic resources eligible for the registers, the OPRHP would be pleased to provide additional guidance.

If this project will involve state or federal permitting, funding or licensing, it may require a more rigorous review for potential impacts to architectural and archaeological resources, in accordance with Section 106 of the National Historic Preservation Act or Section 14.09 of NYS Parks Recreation and Historic Preservation Law.

If you have any questions, I can be reached at (518) 268-2127 or by email.

Sincerely,

Soun Mc In

Sara McIvor Historic Preservation Technical Specialist E-mail: sara.mcivor@parks.ny.gov

cc: J. Samuelson – EP-PC

K. Molinaro – M&L Associates

Parks, Recreation, and Historic Preservation

KATHY HOCHUL Governor ERIK KULLESEID Commissioner

March 8, 2022

Mary Catherine Welch Office Manager Engineering & Surveying Properties, PC 71 Clinton Street Montgomery, NY 12549

Re: HUD Food Bank of the Hudson Valley 574 State Route 416, Montgomery 22PR00930

Dear Mary Catherine Welch:

Thank you for requesting the comments of the New York State Historic Preservation Office (SHPO). We have reviewed the provided documentation in accordance with Section 106 of the National Historic Preservation Act of 1966. These comments are those of the SHPO and relate only to Historic/Cultural resources. They do not include other environmental impacts to New York State Parkland that may be involved in or near your project. Such impacts must be considered as part of the environmental review of the project pursuant to the National Environmental Policy Act and/or the State Environmental Quality Review Act (New York Environmental Conservation Law Article 8).

We note project area is located adjacent to the Harrison Meeting House Site and Cemetery, listed on both the State and National Registers of Historic Places. We have reviewed the site plan dated May 7, 2021. Based on that review, it is SHPO's opinion that the proposed new warehouse, as described, will have No Adverse Effect on historic or archeological resources, provided the following condition is met:

1. Vegetative Buffer: The project shall include the planting of a vegetative buffer between the Harrison Meeting House Site and Cemetery and the proposed warehouse development.

If you have any questions, please feel free to reach out via email.

Sincerely,

in Mc Inc

Sara McIvor Historic Preservation Technical Specialist E-mail: <u>sara.mcivor@parks.ny.gov</u>

cc: J. Samuelson – EP-PC K. Molinaro – M&L Associates

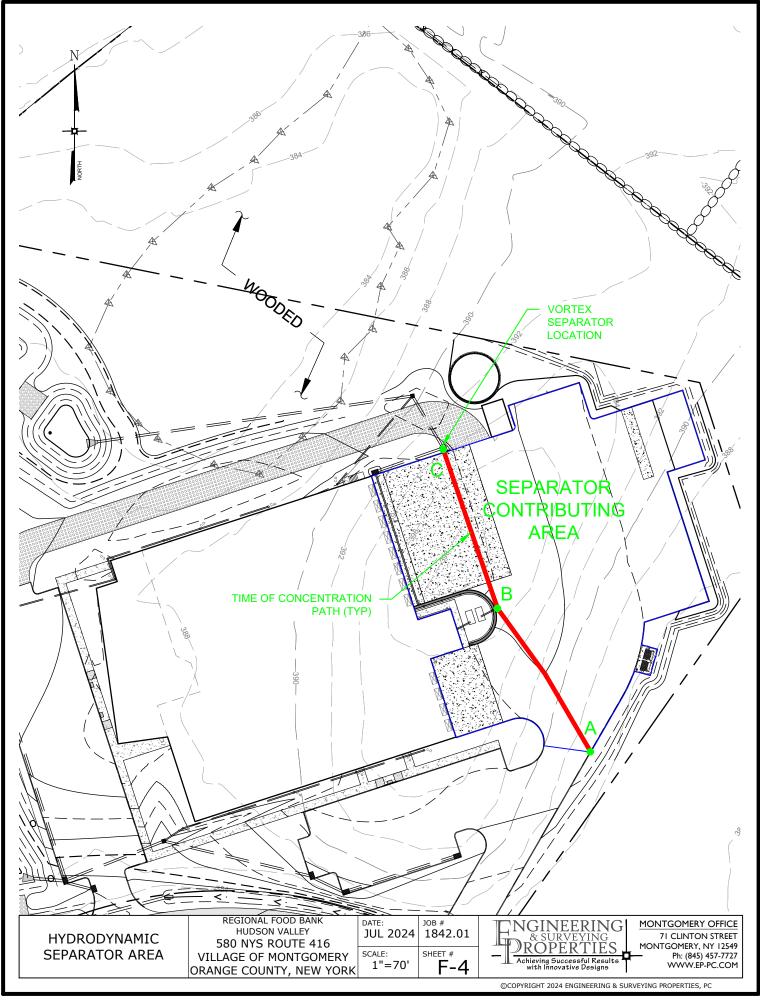
<u>APPENDIX 15</u> <u>SEQUENCE OF</u> CONSTRUCTION ACTIVITY

This page is left intentionally blank

SEQUENCE OF CONSTRUCTION ACTIVITY

- 1. A meeting with village representatives, including village engineer, as well as contractors, project manager and foreman, is to take place a minimum of one week prior to construction.
- Construction staging: stake out limit of disturbance. Install silt fence downhill of proposed construction. Install stabilized construction entrance and stabilize construction road(s). Install temporary sediment trap. Install permanent/temporary grassed swales.
- 3. Clearing and grubbing: remove vegetation from area of construction. Strip topsoil and stockpile in areas shown on the plan. Install sediment barriers around and establish temporary vegetation on topsoil stockpiles.
- 4. Rough grading: cut and fill site to approximate elevations shown on the plan. Implement dust control measures as necessary. Establish permanent stabilization in areas that are complete. Establish temporary stabilization on areas that will be graded again more than 21 days from last disturbance.
- 5. Road/building construction and utility installation: final grading and construction of roadways. Building excavation and construction. Install utilities. Install drainage inlet and outlet protection as each inlet/outlet is constructed. Ensure all erosion control measures are in working order.
- 6. Final grading and landscaping: remove temporary sediment traps and install permanent water quality/quantity facilities. Complete fine grading of site. Spread topsoil and prepare for permanent seeding and planting. Establish permanent vegetation in all remaining unstabilized areas. Install all site landscaping and plantings.
- 7. Post construction: upon stabilization of the site and establishment of all vegetation cover, remove all remaining temporary erosion control measures such as silt fence. Remove all silt and debris from the site including roadways, catch basins, and storm drains.

APPENDIX 16

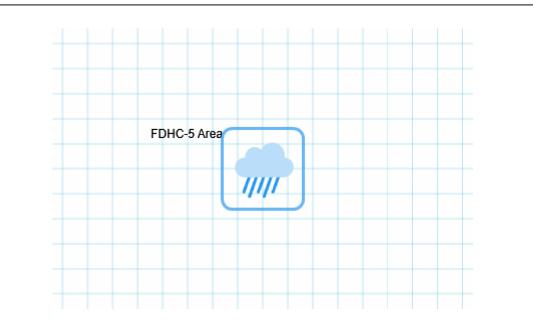

HYDRO INTERNATIONAL

FIRST DEFENSE

HYDRODYNAMIC SEPARATOR

CALCULATIONS AND

MANUFACTURER CUTSHEETS


PROPERTIES		CURVE NUMBER (CN)					
& SURVE	YING		WC	ORKSHE	ET		
Achieving Success	sful Results	WO. NO.	DATE	REVISED	SHEET	OF	
PROJECT TITLE	Designs	1842.01 LOCATION	07/15/22	07/15/24	1	1	
Regional Food Bank -	- Hudson Vallev		Montgomery	,			
CALCULATED BY	APPROVED BY	REF DRAW	/ING(S)				
JM	JS						
<u>1. Runoff curve num</u>	<u>ıber (CN)</u>	Existing	Proposed	Subarea:	Vortex Co	ntrib. Area	
	Cover Description			Area	Prod	uct of	
Soil Name & Hydrologic Group	(cover type, treatment & cond	ditions)	CN	(acres)		Area	
	Impervious Cover		98	0.98		96.04	
				0.00		00.01	
	+						
	+						
	+						
	+						
	+						
	+						
	1						
	1						
	1						
	1						
	<u> </u>						
			TOTAL =	0.98	96	.04	
			00.04				
CN (wei	ighted) = total product	- =	96.04				
	total area		0.98				
CN (wei	ighted) = 98.000	Use CN=	98				
<u>2. Runoff</u> Frequency Rainfall, P Runoff, Q (Use P a					S =	0.20	

CNGINEERING		TIME OF CONCENTRATION				
& SURVEYING POPEPTIES			(Tc) V	VORKSI	HEET	
Achieving Successful Results		WO. NO.	DATE	REVISED	SHEET	OF
with Innovative Designs		1842.01	07/15/22	02/10/23	1	1
PROJECT TITLE		LOCATION		¥1.7		
Regional Food Bank - Hudson Valley CALCULATED BY APPROVED BY		Village of I REF DRAW		ry		
JM JS						
	Existing	Proposed	Area:	Vor	tex Separa	ator
1. <u>Sheet Flow</u>	Segment ID	A - B				
Surface Description (table 3-1)		Paved				
Manning's roughness coeff., 'n' (table 3-1)		0.01				
Flow length, L (total L \leq 300 ft)	ft	125				
Two-year 24-hour rainfall, P ₂	in	3.50				
Land Slope, s	ft/ft	0.010				
$T_{t} = \frac{0.007 (nL)^{0.8}}{P_{2}^{0.5} s^{0.4}}$	hr	0.030				0.030
2. Shallow Concentrated Flow	Segment					
	ID					
Surface description (paved or unpaved)						
Flow length, L	ft					
Watercourse slope, s	ft/ft					
Average velocity, V (figure 3-1)	ft/s					
$T_t = \frac{L}{3600 \text{ V}}$	hr					0.000
3. <u>Channel Flow</u>	Segment ID	B - C				
Cross sectional flow area, a	ft ²	4.91				
Wetted perimeter, p _w	ft	7.85				
Hydraulic radius, r = a/p _w	ft	0.63				
Channel slope, s	ft/ft	0.021				
Manning's roughness coefficient, n		0.010				
$V = \frac{1.49 r^{2/3} s^{1/2}}{n}$	ft/s	15.709				
Flow Length, L	ft	120.0				
$T_t = \frac{L}{3600 V}$	hr	0.002				0.002
Total Tc For Watershed or	r Subarea	(Add Ste	eps 6, 11	, and 19)	hr =	0.03
					min =	1.80

Basin Model

Hydrology Studio v 3.0.0.24

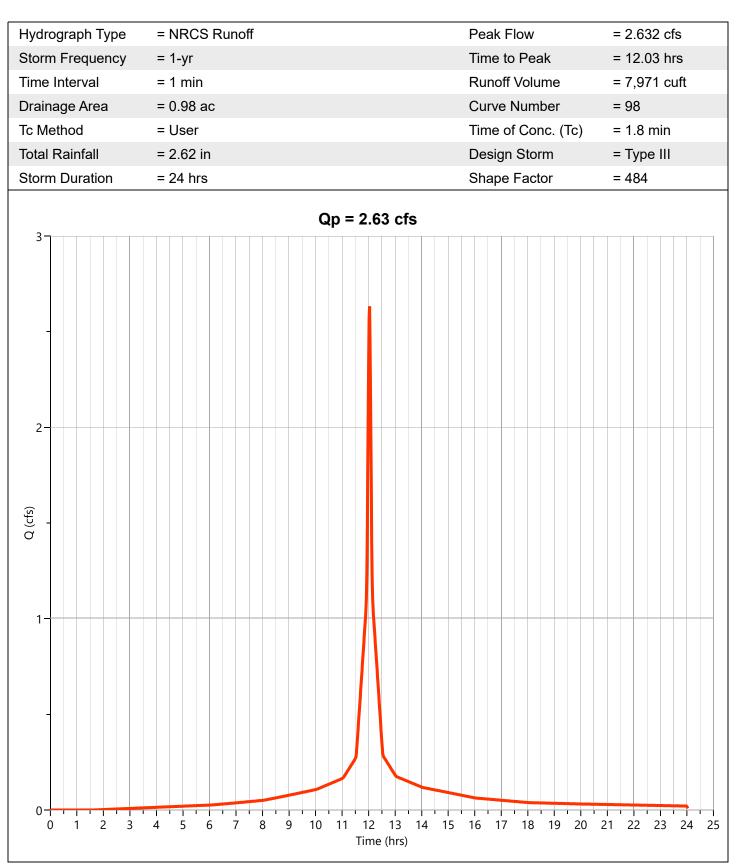
Hydrograph by Return Period

07-17-2024

Hydrology Studio v 3.0.0.24

Hyd.	Hydrograph	Hydrograph	Peak Outflow (cfs)							
No.	Туре	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-у
1	NRCS Runoff	FDHC-5 Area	2.632				4.761			8.399

Hydrograph Report


Hydrology Studio v 3.0.0.24

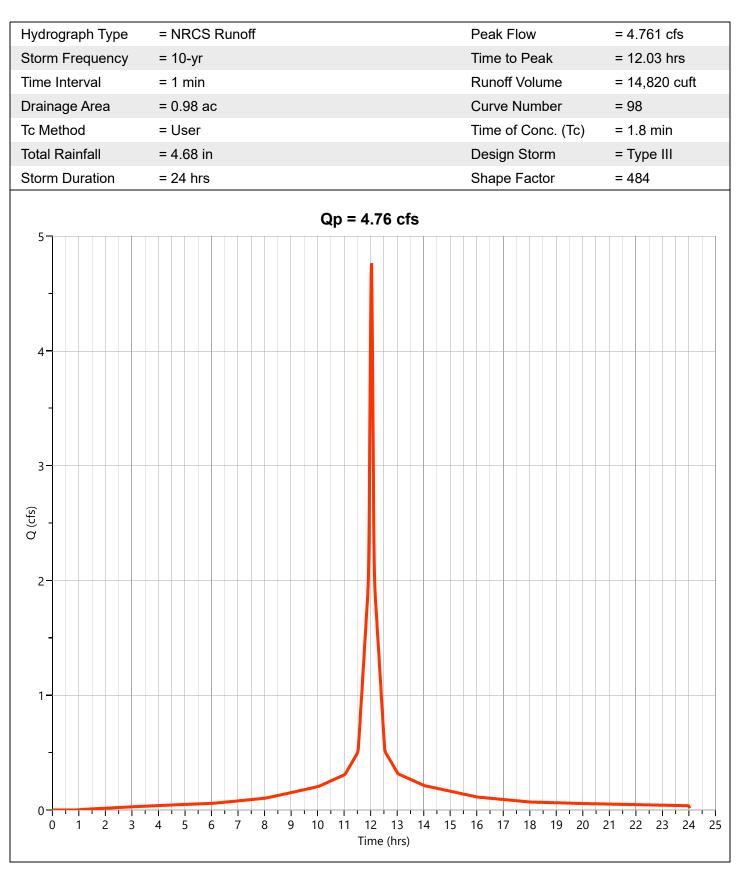
FDHC-5 Area

Project Name: Regional Food Bank - Hudson Valley

07-17-2024

Hyd. No. 1

Hydrograph Report


Hydrology Studio v 3.0.0.24

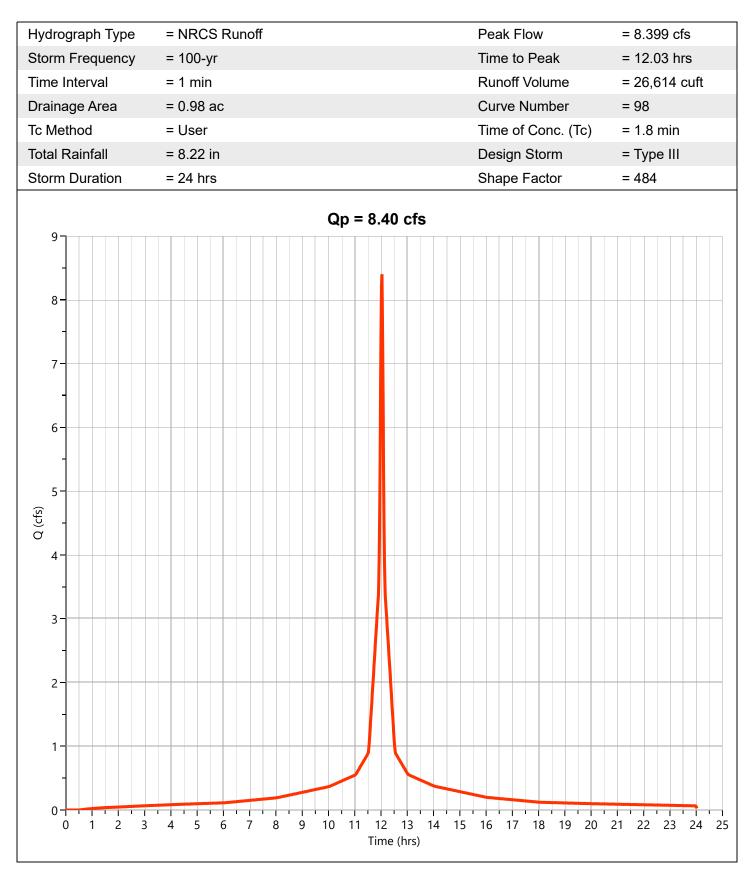
FDHC-5 Area

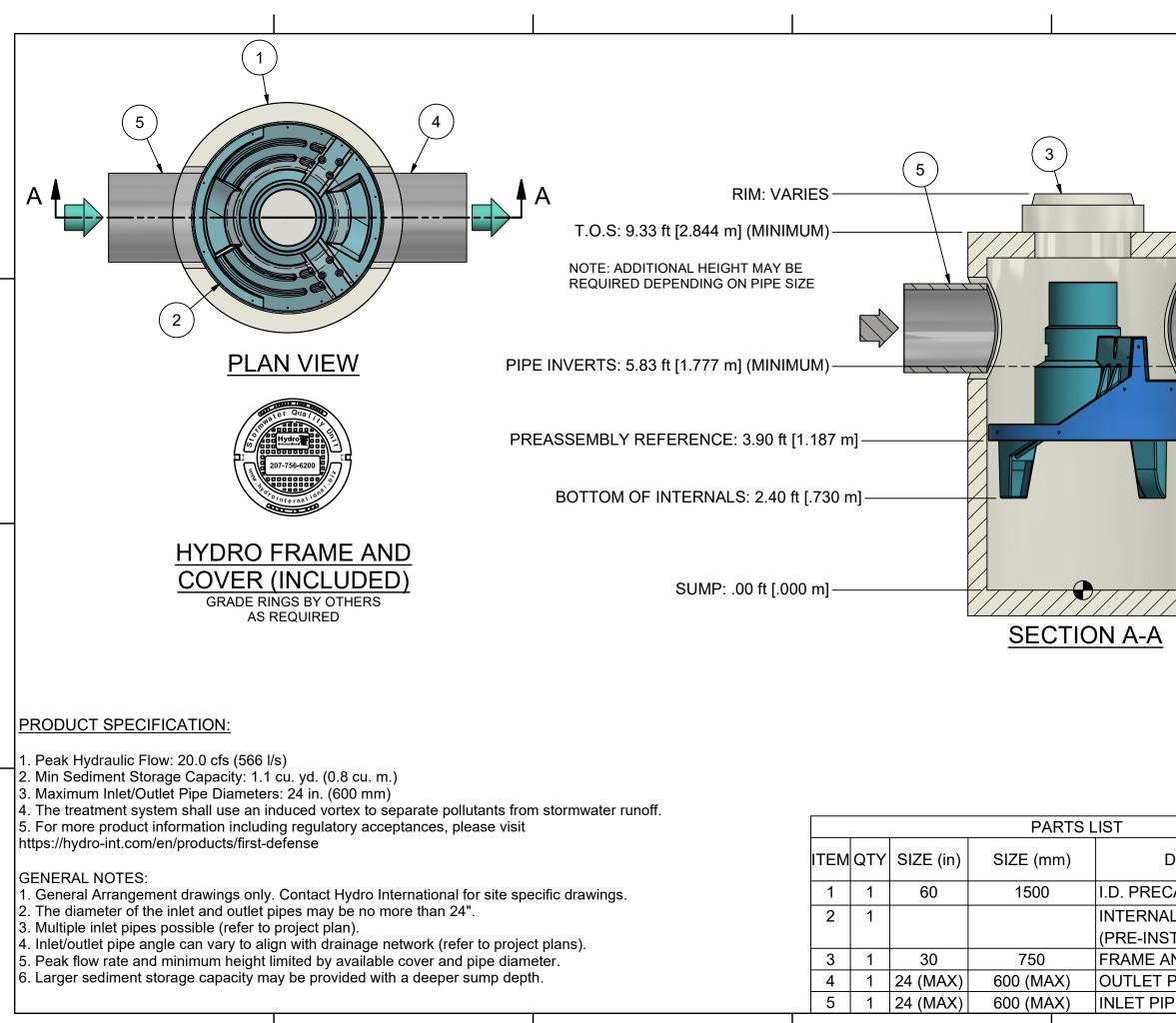
Project Name: Regional Food Bank - Hudson Valley

07-17-2024

Hyd. No. 1

Hydrograph Report


Hydrology Studio v 3.0.0.24


FDHC-5 Area

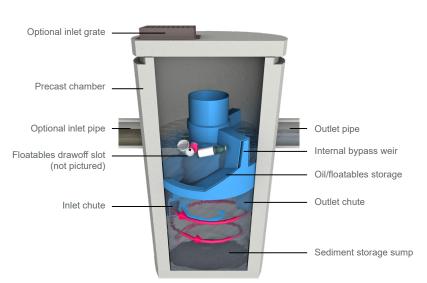
Project Name: Regional Food Bank - Hudson Valley

07-17-2024

Hyd. No. 1

4		
	1. MANHOLE WALL AND SLAB THICKNESSES ARE NOT TO SCALE.	-
	2. CONTACT HYDRO INTERNATIONAL FOR A BOTTOM OF STRUCTURE ELEVATION PRIOR TO SETTING FIRST DEFENSE MANHOLE.	
	3. CONTRACTOR TO CONFIRM RIM, PIPE INVERTS, PIPE DIA. AND PIPE ORIENTATION PRIOR TO RELEASE OF UNIT TO FABRICATION.	
		-
	IF IN DOUBT ASK	
	DATE: SCALE: 11/2/2021 1:30	
	DRAWN BY: CHECKED BY: APPROVED BY ER MRJ	
	Title	
	5-ft DIAMETER	
	FIRST DEFENSE	
	GENERAL ARRANGEMENT	-
	Hvdro2	
	Hydro	
	International $early and a baseline $	
ESCRIPTION	hydro-int.com HYDRO INTERNATIONAL	
AST MANHOLE	WEIGHT: MATERIAL:	
COMPONENTS		
TALLED)	STOCK NUMBER:	
ND COVER (ROUND)	DRAWING NO.:	
PIPE (BY OTHERS)	FD GA-5 SHEET SIZE: SHEET: Rev:	
E (BY OTHERS)	B 1 OF 1 -	
1		

First Defense®


Advanced Hydrodynamic Separator

Product Summary

A Simple Solution for the Trickiest Sites

First Defense is a versatile stormwater separator with some of the highest approved flow rates in the United States. Engineers and contractors can save site space and reduce project costs by using the smallest possible footprint. It works with single or multiple inlet pipes and inlet grates. An internal bypass conveys infrequent peak flows directly to the outlet, efficiently capturing pollutants and preventing washouts.

Features

Contaminated stormwater runoff enters the inlet chute from a surface grate and/or inlet pipe. The inlet chute introduces flow into the chamber tangentially to create a low energy vortex flow regime (magenta arrow) that directs sediment into the sump while oils, floating trash and debris rise to the surface.

Treated stormwater exits through a submerged outlet chute located opposite to the direction of the rotating flow (blue arrow). Enhanced vortex separation is provided by forcing the rotating flow within the vessel to follow the longest path possible rather than directly from inlet to outlet.

Higher flows bypass the treatment chamber to prevent turbulence and washout of captured pollutants. An internal bypass conveys infrequent peak flows directly to the outlet eliminating the need for, and expense of, external bypass control structures. A floatables draw off slot functions to convey floatables into the treatment chamber prior to bypass.

Applications

- » Areas requiring a minimum of 50% TSS removal
- » Stormwater treatment at the point of entry into the drainage line
- » Sites constrained by space, topography or drainage profiles with limited slope and depth of cover
- » Highways, parking lots, industrial areas and urban developments
- » Pre-treatment to ponds, storage systems, green infrastructure

Benefits

Highest Flow Through the Smallest Footprint

- Smaller Footprint, Lower Costs First Defense provides space-saving, easy-toinstall surface water treatment in standard size chambers/manholes.
- » Adapt to Site Limitations Variable configurations will help you effectively slip First Defense into a tight spot. It also works well with large pipes, multiple inlet pipes and inlet grates.
- » Reduce Installation Time & Costs Every First Defense unit is delivered to site preassembled and ready for install.
- » Online System Configuration First Defense eliminates the need for separate structures with its integrated internal bypass.
- Designed with Maintenance in Mind Easy vactor hose access through the center shaft of the system makes for quick sump cleanout, saving time and reducing long-term operational cost.

Sizing & Specifications

First Defense units are available in **six diameters** to fit standard chamber and manhole sizes. The dimensions below are common across all model numbers.

Diameter	Peak Online Flow Rate	Maximum Pipe Diameter¹	Typical Sediment Storage Capacity ²	Minimum Distance from Outlet Invert to Top of Rim ³	Standard Distance from Outlet Invert to Sump Floor
(ft / m)	(cfs / L/s)	(in / mm)	(yd³ / m³)	(ft / m)	(ft / m)
3 / 0.9	15 / 424	18 / 450	0.4 / 0.3	2.0 - 2.5 / 0.61 - 0.76	3.71 / 1.13
4 / 1.2	18 / 510	24 / 600	0.7 / 0.5	2.0 - 3.0 / 0.61 - 0.91	4.97 / 1.5
5 / 1.5	20 / 566	24 / 600	1.1 / .84	2.0 - 3.7 / 0.61 - 1.13	5.83 / 1.5
6 / 1.8	32 / 906	30 / 750	1.6 / 1.2	2.0 - 4.1 / 0.61 - 1.25	5.97 / 1.8
8 / 2.4	50 / 1415	48 / 1200	2.8 / 2.1	2.4 - 5.4 / 0.73 -1.65	7.40 / 2.2
10 / 3.0	50 / 1415	48 / 1200	4.4 / 3.3	2.4 - 6.8 / 0.73 - 2.07	10.25 / 3.12

Hydro International offers First Defense units in **two versions** that conform to the performance requirements of different states' water quality regulations.⁴

First Defense High Capacity		S Treatment Rates	First Defense Optimum	NJDEP Certified Treatment Flow Rates⁴	
Model Number	NJDEP Certified⁴	110µm	Model Number		
	(cfs / L/s)	(cfs / L/s)		(cfs / L/s)	
FDHC-3	0.84 / 23.7	1.06 / 30.0	FDO-3	1.02 / 28.9	
FDHC-4	1.50 / 42.4	1.88 / 53.2	FDO-4	1.81 / 51.3	
FDHC-5	2.35 / 66.2	2.94 / 83.2	FDO-5	2.83 / 80.0	
FDHC-6	3.38 / 95.7	4.23 / 119.8	FDO-6	4.07 / 115.2	
FDHC-8	6.00 / 169.9	7.52 / 212.9	FDO-8	7.23 / 204.7	
FDHC-10	9.38 / 265.6	11.75 / 332.7	FDO-10	11.33 / 320.6	

¹Contact Hydro International when larger pipe sizes are required.

²Contact Hydro International when custom sediment storage capacity is required.

³These are guidlines only. Minimum distance is based on pipe diameter and headloss at assumed flow rates, contact Hydro for detailed design.

⁴NJDEP Certified / <u>NJCAT Verified</u>, based on one inlet pipe and no inlet grate.

Also available in a screened configuration for Full Trash Capture!

Free Online Design Tool

This free online sizing tool will recommend the best separator, model size and online or offline configuration based on site-specific data entered by the user.

Upon completion, users have the option to submit the design to Hydro International for a free review by our engineering team.

Go to <u>hydro-int.com/sizing</u> to access the tool.

Hydro S.

♥ Hydro International, 94 Hutchins Drive, Portland, ME 04102

5 Tel: (207) 756-6200

Email: <u>stormwaterinquiry@hydro-int.com</u>

🛱 Web: www.hydro-int.com/firstdefense

Download Drawings: → hydro-int.com/fddrawings [⁴]

Operation & Maintenance Manual:

Δ

 \rightarrow hydro-int.com/fd-om [2]

APPENDIX 17 CONTRACTOR CERTIFICATION

FORM

CONTRACTOR and SUBCONTRACTOR CERTIFICATION STATEMENT

for the New York State Department of Environmental Conservation (DEC) State Pollutant Discharge Elimination System Permit for Stormwater Discharges from Construction Activity (GP-0-15-002)

As per Part III.A.6 on page 13 of GP-0-15-002 (effective January 29, 2015):

'Prior to the *commencement of construction activity*, the *owner or operator* must identify the contractor(s) and subcontractor(s) that will be responsible for installing, constructing, repairing, replacing, inspecting and maintaining the erosion and sediment control practices included in the SWPPP; and the contractor(s) and subcontractor(s) that will be responsible for constructing the post-construction stormwater management practices included in the SWPPP. The *owner or operator* shall have each of the contractors and sub-contractors identify at least one person from their company that will be responsible for implementation of the SWPPP. This person shall be known as the *trained contractor*. The *owner or operator* shall ensure that at least one *trained contractor* is on site on a daily basis when soil disturbance activities are being performed.'

The *owner or operator* shall have each contractor and subcontractor involved in soil disturbance sign a copy of the following certification statement before they commence <u>any</u> *construction activity*:

Name of Construction Site	NYR DEC Perm	nit ID	Municipality (MS4)
"I hereby certify that I understand and agr agree to implement any corrective actions also understand that the owner or opera current version of the New York State P permit for stormwater discharges from o to cause or contribute to a violation op certifying false, incorrect or inaccurate in of the State of New York and could subje	identified by t ator must com ollutant Disch construction a f water quality formation is a	he qualified in ply with the te parge Elimina ctivities and te standards. F violation of t	nspector during a site inspection. I erms and conditions of the most tion System ("SPDES") general hat it is unlawful for any person furthermore, I understand that he referenced permit and the laws
Responsible Corporate Officer/Partner	Signature	Date	
Name of above Signatory		Name of Co	ompany
Title of above Signatory		Mailing Ad	ldress
Telephone of Company		City, State	and Zip
Identify the specific elements of the SV	VPPP the con	tractor or su	bcontractor is responsible for:
<i>'TRAINED CONTRACTOR' FOR THE</i>	CERTIFIED	O CONTRAC	TOR OR SUBCONTRACTOR
Name of Trained Employee	Title of Train	ned Employee	NYSDEC SWT #

A copy of this signed contractor certification statement must be maintained at the SWPPP on site

APPENDIX 18

SWPPP CONSTRUCTION LOG BOOK

APPENDIX H

STATE POLLUTANT DISCHARGE ELIMINATION SYSTEM FOR CONSTRUCTION ACTIVITIES CONSTRUCTION SITE LOG BOOK

Table of Contents

- I. Pre-Construction Meeting Documents
 - a. Preamble to Site Assessment and Inspections
 - b. Operator's Certification
 - c. Qualified Professional's Credentials & Certification
 - d. Pre-Construction Site Assessment Checklist
- II. Construction Duration Inspections
 - a. Directions
 - b. Modification to the SWPPP
- III. Monthly Summary Reports
- IV. Monitoring, Reporting, and Three-Month Status Reportsa. Operator's Compliance Response Form

Properly completing forms such as those contained in Appendix H meet the inspection requirement of NYS-DEC SPDES GP for Construction Activities. Completed forms shall be kept on site at all times and made available to authorities upon request.

I. PRE-CONSTRUCTION MEETIN	NG DOCUMENTS
Project Name	
Permit No	Date of Authorization
Name of Operator	
Prime Contractor	

a. Preamble to Site Assessment and Inspections

The Following Information To Be Read By All Person's Involved in The Construction of Stormwater Related Activities:

The Operator agrees to have a qualified professional¹ conduct an assessment of the site prior to the commencement of construction² and certify in this inspection report that the appropriate erosion and sediment controls described in the SWPPP have been adequately installed or implemented to ensure overall preparedness of the site for the commencement of construction.

Prior to the commencement of construction, the Operator shall certify in this site logbook that the SWPPP has been prepared in accordance with the State's standards and meets all Federal, State and local erosion and sediment control requirements.

When construction starts, site inspections shall be conducted by the qualified professional at least every 7 calendar days and within 24 hours of the end of a storm event of 0.5 inches or greater (Construction Duration Inspections). The Operator shall maintain a record of all inspection reports in this site logbook. The site logbook shall be maintained on site and be made available to the permitting authorities upon request. The Operator shall post at the site, in a publicly accessible location, a summary of the site inspection activities on a monthly basis (Monthly Summary Report).

The operator shall also prepare a written summary of compliance with this general permit at a minimum frequency of every three months (Operator's Compliance Response Form), while coverage exists. The summary should address the status of achieving each component of the SWPPP.

Prior to filing the Notice of Termination or the end of permit term, the Operator shall have a qualified professional perform a final site inspection. The qualified professional shall certify that the site has undergone final stabilization³ using either vegetative or structural stabilization methods and that all temporary erosion and sediment controls (such as silt fencing) not needed for long-term erosion control have been removed. In addition, the Operator must identify and certify that all permanent structures described in the SWPPP have been constructed and provide the owner(s) with an operation and maintenance plan that ensures the structure(s) continuously functions as designed.

1 "Qualified Professional means a person knowledgeable in the principles and practice of erosion and sediment controls, such as a Certified Professional in Erosion and Sediment Control (CPESC), soil scientist, licensed engineer or someone working under the direction and supervision of a licensed engineer (person must have experience in the principles and practices of erosion and sediment control).

2 "Commencement of construction" means the initial removal of vegetation and disturbance of soils associated with clearing, grading or excavating activities or other construction activities.

3 "Final stabilization" means that all soil-disturbing activities at the site have been completed and a uniform, perennial vegetative cover with a density of eighty (80) percent has been established or equivalent stabilization measures (such as the use of mulches or geotextiles) have been employed on all unpaved areas and areas not covered by permanent structures.

b. Operators Certification

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. Further, I hereby certify that the SWPPP meets all Federal, State, and local erosion and sediment control requirements. I am aware that false statements made herein are punishable as a class A misdemeanor pursuant to Section 210.45 of the Penal Law.

Name (please print):					
Title		Date:			
Address:					
Phone:	Email:				
Signature:					

c. Qualified Professional's Credentials & Certification

"I hereby certify that I meet the criteria set forth in the General Permit to conduct site inspections for this project and that the appropriate erosion and sediment controls described in the SWPPP and as described in the following Pre-construction Site Assessment Checklist have been adequately installed or implemented, ensuring the overall preparedness of this site for the commencement of construction."

Name (please pr	int):	
Title		Date:
Address:		
Phone:	Email:	
Signature:		

d. Pre-construction Site Assessment Checklist (NOTE: Provide comments below as necessary)

1. Notice of Intent, SWPPP, and Contractors Certification:

Yes No NA

- [] [] Has a Notice of Intent been filed with the NYS Department of Conservation?
- [] [] [] Is the SWPPP on-site? Where?
- [] [] [] Is the Plan current? What is the latest revision date?_____
- [] [] Is a copy of the NOI (with brief description) onsite? Where?____
- [] [] Have all contractors involved with stormwater related activities signed a contractor's certification?

2. Resource Protection

Yes No NA

- [] [] Are construction limits clearly flagged or fenced?
- [] [] Important trees and associated rooting zones, on-site septic system absorption fields, existing vegetated areas suitable for filter strips, especially in perimeter areas, have been flagged for protection.
- [] [] [] Creek crossings installed prior to land-disturbing activity, including clearing and blasting.

3. Surface Water Protection

Yes No NA

- [] [] Clean stormwater runoff has been diverted from areas to be disturbed.
- [] [] Bodies of water located either on site or in the vicinity of the site have been identified and protected.
- [] [] Appropriate practices to protect on-site or downstream surface water are installed.
- [] [] Are clearing and grading operations divided into areas <5 acres?

4. Stabilized Construction Entrance

Yes No NA

- [] [] A temporary construction entrance to capture mud and debris from construction vehicles before they enter the public highway has been installed.
- [] [] Other access areas (entrances, construction routes, equipment parking areas) are stabilized immediately as work takes place with gravel or other cover.
- [] [] Sediment tracked onto public streets is removed or cleaned on a regular basis.

5. Perimeter Sediment Controls

Yes No NA

- [] [] Silt fence material and installation comply with the standard drawing and specifications.
- [] [] Silt fences are installed at appropriate spacing intervals
- [] [] Sediment/detention basin was installed as first land disturbing activity.
- [] [] [] Sediment traps and barriers are installed.

6. Pollution Prevention for Waste and Hazardous Materials

Yes No NA

- [] [] The Operator or designated representative has been assigned to implement the spill prevention avoidance and response plan.
- [] [] [] The plan is contained in the SWPPP on page _
- [] [] Appropriate materials to control spills are onsite. Where?

II. CONSTRUCTION DURATION INSPECTIONS

a. Directions:

Inspection Forms will be filled out during the entire construction phase of the project. Required Elements:

(1) On a site map, indicate the extent of all disturbed site areas and drainage pathways. Indicate site areas that are expected to undergo initial disturbance or significant site work within the next 14-day period;

(2) Indicate on a site map all areas of the site that have undergone temporary or permanent stabilization;

(3) Indicate all disturbed site areas that have not undergone active site work during the previous 14-day period;

(4) Inspect all sediment control practices and record the approximate degree of sediment accumulation as a percentage of sediment storage volume (for example, 10 percent, 20 percent, 50 percent);

(5) Inspect all erosion and sediment control practices and record all maintenance requirements such as verifying the integrity of barrier or diversion systems (earthen berms or silt fencing) and containment systems (sediment basins and sediment traps). Identify any evidence of rill or gully erosion occurring on slopes and any loss of stabilizing vegetation or seeding/mulching. Document any excessive deposition of sediment or ponding water along barrier or diversion systems. Record the depth of sediment within containment structures, any erosion near outlet and overflow structures, and verify the ability of rock filters around perforated riser pipes to pass water; and

(6) Immediately report to the Operator any deficiencies that are identified with the implementation of the SWPPP.

SITE PLAN/SKETCH

Inspector (print name)

Date of Inspection

Qualified Professional (print name)Qualified Professional SignatureThe above signed acknowledges that, to the best of his/her knowledge, all information provided on the forms is accurate and complete.

CONSTRUCTION DURATION INSPECTIONS

Maintaining Water Quality

Yes No NA

- [] [] Is there an increase in turbidity causing a substantial visible contrast to natural conditions?
- [] [] [] Is there residue from oil and floating substances, visible oil film, or globules or grease?
- [] [] All disturbance is within the limits of the approved plans.
- [] [] Have receiving lake/bay, stream, and/or wetland been impacted by silt from project?

Housekeeping

1. General Site Conditions

Yes No NA

- [] [] [] Is construction site litter and debris appropriately managed?
- [] [] Are facilities and equipment necessary for implementation of erosion and sediment control in working order and/or properly maintained?
- [] [] [] Is construction impacting the adjacent property?
- [] [] [] Is dust adequately controlled?

2. Temporary Stream Crossing

Yes No NA

- [] [] Maximum diameter pipes necessary to span creek without dredging are installed.
- [] [] Installed non-woven geotextile fabric beneath approaches.
- [] [] Is fill composed of aggregate (no earth or soil)?
- [] [] Rock on approaches is clean enough to remove mud from vehicles & prevent sediment from entering stream during high flow.

Runoff Control Practices

1. Excavation Dewatering

Yes No NA

- [] [] Upstream and downstream berms (sandbags, inflatable dams, etc.) are installed per plan.
- [] [] Clean water from upstream pool is being pumped to the downstream pool.
- [] [] Sediment laden water from work area is being discharged to a silt-trapping device.
- [] [] [] Constructed upstream berm with one-foot minimum freeboard.

2. Level Spreader

Yes No NA

- [] [] [] Installed per plan.
- [] [] Constructed on undisturbed soil, not on fill, receiving only clear, non-sediment laden flow.
- [] [] Flow sheets out of level spreader without erosion on downstream edge.

3. Interceptor Dikes and Swales

Yes No NA

- [] [] Installed per plan with minimum side slopes 2H:1V or flatter.
- [] [] Stabilized by geotextile fabric, seed, or mulch with no erosion occurring.
- [] [] [] Sediment-laden runoff directed to sediment trapping structure

CONSTRUCTION DURATION INSPECTIONS Runoff Control Practices (continued)

4. Stone Check Dam

Yes No NA

- [] [] [] Is channel stable? (flow is not eroding soil underneath or around the structure).
- [] [] [] Check is in good condition (rocks in place and no permanent pools behind the structure).
- [] [] Has accumulated sediment been removed?.

5. Rock Outlet Protection

Yes No NA

[] [] [] Installed per plan.

[] [] Installed concurrently with pipe installation.

Soil Stabilization

1. Topsoil and Spoil Stockpiles

Yes No NA

- [] [] [] Stockpiles are stabilized with vegetation and/or mulch.
- [] [] [] Sediment control is installed at the toe of the slope.

2. Revegetation

Yes No NA

- [] [] [] Temporary seedings and mulch have been applied to idle areas.
- [] [] 4 inches minimum of topsoil has been applied under permanent seedings

Sediment Control Practices

1. Stabilized Construction Entrance

Yes No NA

- [] [] [] Stone is clean enough to effectively remove mud from vehicles.
- [] [] [] Installed per standards and specifications?
- [] [] Does all traffic use the stabilized entrance to enter and leave site?
- [] [] [] Is adequate drainage provided to prevent ponding at entrance?

2. Silt Fence

Yes No NA

- [] [] Installed on Contour, 10 feet from toe of slope (not across conveyance channels).
- [] [] Joints constructed by wrapping the two ends together for continuous support.
- [] [] Fabric buried 6 inches minimum.
- [] [] Posts are stable, fabric is tight and without rips or frayed areas.

Sediment accumulation is ___% of design capacity.

CONSTRUCTION DURATION INSPECTIONS

Sediment Control Practices (continued)

3. Storm Drain Inlet Protection (Use for Stone & Block; Filter Fabric; Curb; or, Excavated practices) **Yes No NA**

- [] [] Installed concrete blocks lengthwise so open ends face outward, not upward.
- [] [] Placed wire screen between No. 3 crushed stone and concrete blocks.
- [] [] [] Drainage area is 1 acre or less.
- [] [] [] Excavated area is 900 cubic feet.
- [] [] [] Excavated side slopes should be 2:1.
- [] [] [] 2" x 4" frame is constructed and structurally sound.
- [] [] Posts 3-foot maximum spacing between posts.
- [] [] Fabric is embedded 1 to 1.5 feet below ground and secured to frame/posts with staples at max 8-inch spacing.
- [] [] Posts are stable, fabric is tight and without rips or frayed areas.

Sediment accumulation ____% of design capacity.

4. Temporary Sediment Trap

Yes No NA

- [] [] Outlet structure is constructed per the approved plan or drawing.
- [] [] Geotextile fabric has been placed beneath rock fill.

Sediment accumulation is ___% of design capacity.

5. Temporary Sediment Basin

Yes No NA

[] [] Basin and outlet structure constructed per the approved plan.

[] [] Basin side slopes are stabilized with seed/mulch.

- [] [] Drainage structure flushed and basin surface restored upon removal of sediment basin facility. Sediment accumulation is ___% of design capacity.
- <u>Note</u>: Not all erosion and sediment control practices are included in this listing. Add additional pages to this list as required by site specific design.

Construction inspection checklists for post-development stormwater management practices can be found in Appendix F of the New York Stormwater Management Design Manual.

CONSTRUCTION DURATION INSPECTIONS

b. Modifications to the SWPPP (To be completed as described below)

The Operator shall amend the SWPPP whenever:

1. There is a significant change in design, construction, operation, or maintenance which may have a significant effect on the potential for the discharge of pollutants to the waters of the United States and which has not otherwise been addressed in the SWPPP; or

2. The SWPPP proves to be ineffective in:

- a. Eliminating or significantly minimizing pollutants from sources identified in the SWPPP and as required by this permit; or
- b. Achieving the general objectives of controlling pollutants in stormwater discharges from permitted construction activity; and

3. Additionally, the SWPPP shall be amended to identify any new contractor or subcontractor that will implement any measure of the SWPPP.

Modification & Reason:

III. Monthly Summary of Site Inspection Activities

Name of Permitted Facility:	Today's Date:	Reporting Month:
Location:	Permit Identification #:	
Name and Telephone Number of Site Inspector:		

Date of	Regular / Rainfall		
Inspection	based Inspection	Name of Inspector	Items of Concern

Owner/Operator Certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that false statements made herein are punishable as a class A misdemeanor pursuant to Section 210.45 of the Penal Law."

Signature of Permittee or Duly Authorized Representative

Name of Permittee or Duly Authorized Representative Date

Duly authorized representatives <u>must have written authorization</u>, submitted to DEC, to sign any permit documents.